horychtom commited on
Commit
6af1563
·
verified ·
1 Parent(s): 64582f5

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +171 -0
README.md ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Here’s a template for a `README.md` file that you can reuse for each of your models on Hugging Face. It is designed to provide a comprehensive overview of the model, its usage, links to relevant papers, datasets, and results:
2
+
3
+ ---
4
+
5
+ # Model Name
6
+
7
+ **Model Name:** `Your Model Name`
8
+ **Model Type:** Token-level / Sentence-level / Paragraph-level Classifier
9
+ **Organization:** [Your Lab's Name or Organization](https://huggingface.co/your_org)
10
+ **Model Version:** `v1.0.0`
11
+ **Framework:** `PyTorch` or `TensorFlow`
12
+ **License:** `MIT / Apache 2.0 / Other`
13
+
14
+ ---
15
+
16
+ ## Table of Contents
17
+
18
+ 1. [Model Overview](#model-overview)
19
+ 2. [Model Architecture](#model-architecture)
20
+ 3. [Training Data](#training-data)
21
+ 4. [Evaluation Results](#evaluation-results)
22
+ 5. [Usage](#usage)
23
+ 6. [Example Code](#example-code)
24
+ 7. [Related Papers](#related-papers)
25
+ 8. [Datasets](#datasets)
26
+ 9. [Limitations](#limitations)
27
+ 10. [Citation](#citation)
28
+
29
+ ---
30
+
31
+ ## Model Overview
32
+
33
+ This model is a [token-level/sentence-level/paragraph-level] classifier that was trained for [specific task, e.g., sentiment analysis, named entity recognition, etc.]. The model is based on [model architecture, e.g., BERT, RoBERTa, etc.] and has been fine-tuned on [mention the dataset] for [number of epochs or other training details].
34
+
35
+ It achieves state-of-the-art performance on [mention dataset or task] and is specifically designed for [specific domain or industry, if applicable].
36
+
37
+ ---
38
+
39
+ ## Model Architecture
40
+
41
+ - **Base Model:** [mention architecture, e.g., BERT-base, RoBERTa-large, etc.]
42
+ - **Number of Parameters:** [number of parameters]
43
+ - **Layers:** [number of layers, if applicable]
44
+ - **Attention Heads:** [number of attention heads, if applicable]
45
+ - **Max Sequence Length:** [max input length, if relevant]
46
+
47
+ ---
48
+
49
+ ## Training Data
50
+
51
+ The model was fine-tuned on the [name of dataset] dataset. This dataset consists of [short description of dataset, e.g., number of instances, labels, any important data characteristics].
52
+
53
+ You can find the dataset [here](dataset_url).
54
+
55
+ ---
56
+
57
+ ## Evaluation Results
58
+
59
+ The model was evaluated on [name of dataset] and achieved the following results:
60
+
61
+ - **Accuracy:** [accuracy score]
62
+ - **F1-Score:** [F1 score]
63
+ - **Precision:** [precision score]
64
+ - **Recall:** [recall score]
65
+
66
+ For detailed evaluation results, see the corresponding paper or evaluation logs.
67
+
68
+ ---
69
+
70
+ ## Usage
71
+
72
+ To use this model in your code, install the required libraries:
73
+
74
+ ```bash
75
+ pip install transformers
76
+ ```
77
+
78
+ Then, load the model as follows:
79
+
80
+ ```python
81
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
82
+
83
+ tokenizer = AutoTokenizer.from_pretrained("your_org/your_model")
84
+ model = AutoModelForSequenceClassification.from_pretrained("your_org/your_model")
85
+
86
+ # Example input
87
+ input_text = "Your example sentence goes here."
88
+ inputs = tokenizer(input_text, return_tensors="pt")
89
+ outputs = model(**inputs)
90
+
91
+ # Accessing the predicted class
92
+ predicted_class = outputs.logits.argmax(dim=-1)
93
+ print(f"Predicted class: {predicted_class}")
94
+ ```
95
+
96
+ ---
97
+
98
+ ## Example Code
99
+
100
+ Here’s an example for batch classification:
101
+
102
+ ```python
103
+ import torch
104
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
105
+
106
+ tokenizer = AutoTokenizer.from_pretrained("your_org/your_model")
107
+ model = AutoModelForSequenceClassification.from_pretrained("your_org/your_model")
108
+
109
+ # Example sentences
110
+ sentences = ["Sentence 1", "Sentence 2", "Sentence 3"]
111
+ inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
112
+
113
+ with torch.no_grad():
114
+ outputs = model(**inputs)
115
+
116
+ predicted_classes = outputs.logits.argmax(dim=-1)
117
+ print(f"Predicted classes: {predicted_classes}")
118
+ ```
119
+
120
+ ---
121
+
122
+ ## Related Papers
123
+
124
+ This model is described in the following paper(s):
125
+
126
+ - **Title:** [Paper Title](paper_url)
127
+ **Authors:** [Author Names]
128
+ **Conference/Journal:** [Conference/Journal Name]
129
+ **Year:** [Year]
130
+
131
+ Please cite this paper if you use the model.
132
+
133
+ ---
134
+
135
+ ## Datasets
136
+
137
+ The model was trained on the following dataset(s):
138
+
139
+ - **Dataset Name:** [Dataset Name](dataset_url)
140
+ **Size:** [Dataset size]
141
+ **Number of Labels:** [Number of labels or classes]
142
+ **Availability:** [Open-source or proprietary]
143
+
144
+ ---
145
+
146
+ ## Limitations
147
+
148
+ - The model is limited to [token-level/sentence-level/paragraph-level] classification tasks.
149
+ - Performance may degrade on out-of-domain data.
150
+ - [Other known limitations, e.g., bias in data, challenges with specific languages.]
151
+
152
+ ---
153
+
154
+ ## Citation
155
+
156
+ If you use this model, please cite the following paper(s):
157
+
158
+ ```bibtex
159
+ @article{your_citation,
160
+ title={Your Title},
161
+ author={Your Name and Co-authors},
162
+ journal={Journal Name},
163
+ year={Year},
164
+ publisher={Publisher},
165
+ url={paper_url}
166
+ }
167
+ ```
168
+
169
+ ---
170
+
171
+ Feel free to adapt this template to match the specific needs of each model. Let me know if you'd like to adjust any sections further!