best_model.pt
Browse files- README.md +73 -0
- config.json +24 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
model-index:
|
9 |
+
- name: windowz_test-022625
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# windowz_test-022625
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Accuracy: 0.9908
|
21 |
+
- F1: 0.9910
|
22 |
+
- Iou: 0.9832
|
23 |
+
- Per Class Metrics: {0: {'f1': 0.99751, 'iou': 0.99504, 'accuracy': 0.99628}, 1: {'f1': 0.98091, 'iou': 0.96254, 'accuracy': 0.99081}, 2: {'f1': 0.73081, 'iou': 0.5758, 'accuracy': 0.99448}}
|
24 |
+
- Loss: 0.0169
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 16
|
45 |
+
- eval_batch_size: 16
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: cosine
|
49 |
+
- lr_scheduler_warmup_steps: 1000
|
50 |
+
- num_epochs: 100
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | | Class Metrics | Validation Loss |
|
55 |
+
|:-------------:|:-----:|:------:|:------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------:|
|
56 |
+
| 0.4586 | 5.0 | 12815 | 0.9710 | {0: {'f1': 0.99385, 'iou': 0.98778, 'accuracy': 0.99081}, 1: {'f1': 0.96879, 'iou': 0.93947, 'accuracy': 0.98478}, 2: {'f1': 0.62073, 'iou': 0.45004, 'accuracy': 0.99365}} | 0.0890 |
|
57 |
+
| 0.4363 | 10.0 | 25630 | 0.9810 | {0: {'f1': 0.99729, 'iou': 0.9946, 'accuracy': 0.99595}, 1: {'f1': 0.97943, 'iou': 0.95969, 'accuracy': 0.99}, 2: {'f1': 0.6238, 'iou': 0.45327, 'accuracy': 0.99404}} | 0.0220 |
|
58 |
+
| 0.4148 | 15.0 | 38445 | 0.9785 | {0: {'f1': 0.99619, 'iou': 0.9924, 'accuracy': 0.99428}, 1: {'f1': 0.97538, 'iou': 0.95195, 'accuracy': 0.98824}, 2: {'f1': 0.71793, 'iou': 0.55998, 'accuracy': 0.99388}} | 0.0593 |
|
59 |
+
| 0.3935 | 20.0 | 51260 | 0.9743 | {0: {'f1': 0.99419, 'iou': 0.98845, 'accuracy': 0.99126}, 1: {'f1': 0.97367, 'iou': 0.94869, 'accuracy': 0.9874}, 2: {'f1': 0.67815, 'iou': 0.51303, 'accuracy': 0.99437}} | 0.0229 |
|
60 |
+
| 0.3755 | 25.0 | 64075 | 0.9826 | {0: {'f1': 0.99767, 'iou': 0.99534, 'accuracy': 0.99651}, 1: {'f1': 0.9796, 'iou': 0.96001, 'accuracy': 0.9902}, 2: {'f1': 0.71337, 'iou': 0.55445, 'accuracy': 0.99367}} | 0.0187 |
|
61 |
+
| 0.3834 | 30.0 | 76890 | 0.9814 | {0: {'f1': 0.99714, 'iou': 0.9943, 'accuracy': 0.99572}, 1: {'f1': 0.97847, 'iou': 0.95784, 'accuracy': 0.98967}, 2: {'f1': 0.71791, 'iou': 0.55995, 'accuracy': 0.99391}} | 0.0175 |
|
62 |
+
| 0.3609 | 35.0 | 89705 | 0.9832 | {0: {'f1': 0.99751, 'iou': 0.99504, 'accuracy': 0.99628}, 1: {'f1': 0.98091, 'iou': 0.96254, 'accuracy': 0.99081}, 2: {'f1': 0.73081, 'iou': 0.5758, 'accuracy': 0.99448}} | 0.0169 |
|
63 |
+
| 0.364 | 40.0 | 102520 | 0.9815 | {0: {'f1': 0.99756, 'iou': 0.99513, 'accuracy': 0.99635}, 1: {'f1': 0.97769, 'iou': 0.95635, 'accuracy': 0.98933}, 2: {'f1': 0.70736, 'iou': 0.54722, 'accuracy': 0.99295}} | 0.0210 |
|
64 |
+
| 0.3561 | 45.0 | 115335 | 0.9857 | {0: {'f1': 0.99789, 'iou': 0.9958, 'accuracy': 0.99685}, 1: {'f1': 0.98385, 'iou': 0.96822, 'accuracy': 0.99221}, 2: {'f1': 0.77212, 'iou': 0.62883, 'accuracy': 0.99536}} | 0.0208 |
|
65 |
+
| 0.3714 | 50.0 | 128150 | 0.9843 | {0: {'f1': 0.99769, 'iou': 0.99539, 'accuracy': 0.99654}, 1: {'f1': 0.98205, 'iou': 0.96473, 'accuracy': 0.99135}, 2: {'f1': 0.75937, 'iou': 0.61209, 'accuracy': 0.99479}} | 0.0170 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.45.0
|
71 |
+
- Pytorch 2.5.1+cu124
|
72 |
+
- Datasets 2.21.0
|
73 |
+
- Tokenizers 0.20.3
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"UNETForSegmentation"
|
4 |
+
],
|
5 |
+
"dim": 224,
|
6 |
+
"hidden_act": "gelu",
|
7 |
+
"hidden_size": 256,
|
8 |
+
"img_size": 128,
|
9 |
+
"intermediate_size": 1024,
|
10 |
+
"is_causal": false,
|
11 |
+
"k": 2,
|
12 |
+
"model_type": "Unet",
|
13 |
+
"n_filts": 4,
|
14 |
+
"num_attention_heads": 8,
|
15 |
+
"num_channels": 3,
|
16 |
+
"num_classes": 3,
|
17 |
+
"num_hidden_layers": 6,
|
18 |
+
"num_layers": 2,
|
19 |
+
"patch_size": 16,
|
20 |
+
"problem_type": "single_label_classification",
|
21 |
+
"t": 2,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.45.0"
|
24 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ce3f067b392776ac7157fe4900761b0fa9abbd906fee67cf580aaa07b307dcb
|
3 |
+
size 2188724
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:553776a611c5811e0dcc9b040bb1da0cd9cdb7e5053d1c3d889eec34daf7779b
|
3 |
+
size 5240
|