--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: windowz_dce-022625 results: [] --- # windowz_dce-022625 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Accuracy: 0.9916 - F1: 0.9914 - Iou: 0.9838 - Per Class Metrics: {0: {'f1': 0.99722, 'iou': 0.99445, 'accuracy': 0.99583}, 1: {'f1': 0.98262, 'iou': 0.96584, 'accuracy': 0.99157}, 2: {'f1': 0.752, 'iou': 0.60257, 'accuracy': 0.9957}} - Loss: 0.0191 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | | Class Metrics | Validation Loss | |:-------------:|:-----:|:------:|:------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------:| | 0.4609 | 5.0 | 12815 | 0.9814 | {0: {'f1': 0.99753, 'iou': 0.99506, 'accuracy': 0.9963}, 1: {'f1': 0.97958, 'iou': 0.95998, 'accuracy': 0.99006}, 2: {'f1': 0.62099, 'iou': 0.45032, 'accuracy': 0.99369}} | 0.0445 | | 0.4462 | 10.0 | 25630 | 0.9830 | {0: {'f1': 0.99759, 'iou': 0.99518, 'accuracy': 0.99639}, 1: {'f1': 0.98171, 'iou': 0.96408, 'accuracy': 0.99106}, 2: {'f1': 0.67311, 'iou': 0.50729, 'accuracy': 0.99467}} | 0.0885 | | 0.4105 | 15.0 | 38445 | 0.9847 | {0: {'f1': 0.99756, 'iou': 0.99514, 'accuracy': 0.99635}, 1: {'f1': 0.98336, 'iou': 0.96726, 'accuracy': 0.99192}, 2: {'f1': 0.7548, 'iou': 0.60617, 'accuracy': 0.99557}} | 0.0298 | | 0.4006 | 20.0 | 51260 | 0.9834 | {0: {'f1': 0.99716, 'iou': 0.99433, 'accuracy': 0.99574}, 1: {'f1': 0.98185, 'iou': 0.96435, 'accuracy': 0.99123}, 2: {'f1': 0.75043, 'iou': 0.60056, 'accuracy': 0.99546}} | 0.0201 | | 0.4016 | 25.0 | 64075 | 0.9838 | {0: {'f1': 0.99722, 'iou': 0.99445, 'accuracy': 0.99583}, 1: {'f1': 0.98262, 'iou': 0.96584, 'accuracy': 0.99157}, 2: {'f1': 0.752, 'iou': 0.60257, 'accuracy': 0.9957}} | 0.0191 | | 0.3635 | 30.0 | 76890 | 0.9849 | {0: {'f1': 0.99748, 'iou': 0.99496, 'accuracy': 0.99622}, 1: {'f1': 0.98326, 'iou': 0.96706, 'accuracy': 0.99192}, 2: {'f1': 0.78691, 'iou': 0.64868, 'accuracy': 0.99567}} | 0.0195 | | 0.3754 | 35.0 | 89705 | 0.9822 | {0: {'f1': 0.99678, 'iou': 0.99359, 'accuracy': 0.99518}, 1: {'f1': 0.98001, 'iou': 0.96081, 'accuracy': 0.99042}, 2: {'f1': 0.77117, 'iou': 0.62757, 'accuracy': 0.9952}} | 0.0284 | | 0.3568 | 40.0 | 102520 | 0.9827 | {0: {'f1': 0.99752, 'iou': 0.99506, 'accuracy': 0.99629}, 1: {'f1': 0.97971, 'iou': 0.96022, 'accuracy': 0.99027}, 2: {'f1': 0.73597, 'iou': 0.58224, 'accuracy': 0.99395}} | 0.0239 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.5.1+cu124 - Datasets 2.21.0 - Tokenizers 0.20.3