Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,124 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
|
19 |
|
20 |
-
- **
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
-
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
|
|
|
|
37 |
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
|
50 |
-
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
|
|
57 |
|
58 |
-
|
59 |
|
60 |
-
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
69 |
|
70 |
-
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- Legal
|
5 |
+
- court
|
6 |
+
- prediction
|
7 |
+
- Arabic
|
8 |
+
- NLP
|
9 |
+
datasets:
|
10 |
+
- mbayan/Arabic-LJP
|
11 |
+
language:
|
12 |
+
- ar
|
13 |
+
base_model:
|
14 |
+
- meta-llama/Llama-3.1-8B-Instruct
|
15 |
+
pipeline_tag: text-generation
|
16 |
---
|
17 |
|
18 |
+
# Arabic Legal Judgment Prediction Dataset
|
19 |
|
20 |
+
## Overview
|
21 |
|
22 |
+
This dataset is designed for **Arabic Legal Judgment Prediction (LJP)**, collected and preprocessed from **Saudi commercial court judgments**. It serves as a benchmark for evaluating Large Language Models (LLMs) in the legal domain, particularly in low-resource settings.
|
23 |
|
24 |
+
The dataset is released as part of our research:
|
25 |
|
26 |
+
> **Can Large Language Models Predict the Outcome of Judicial Decisions?**
|
27 |
+
> *Mohamed Bayan Kmainasi, Ali Ezzat Shahroor, and Amani Al-Ghraibah*
|
28 |
+
> [arXiv:2501.09768](https://arxiv.org/abs/2501.09768)
|
29 |
+
## Model Usage
|
30 |
+
```python
|
31 |
|
32 |
+
To use the model
|
33 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
34 |
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained("mbayan/Llama-3.1-8b-ArLJP")
|
36 |
+
model = AutoModelForCausalLM.from_pretrained("mbayan/Llama-3.1-8b-ArLJP")
|
37 |
+
```
|
38 |
|
39 |
+
## Dataset Details
|
40 |
|
41 |
+
- **Size:** 3752 training samples, 538 test samples.
|
42 |
+
- **Annotations:** 75 diverse Arabic instructions generated using GPT-4o, varying in length and complexity.
|
43 |
+
- **Tasks Supported:**
|
44 |
+
- Zero-shot, One-shot, and Fine-tuning evaluation of Arabic legal text understanding.
|
|
|
|
|
|
|
45 |
|
46 |
+
## Data Structure
|
47 |
|
48 |
+
The dataset is provided in a structured format:
|
49 |
|
50 |
+
```python
|
51 |
+
from datasets import load_dataset
|
|
|
52 |
|
53 |
+
dataset = load_dataset("mbayan/Arabic-LJP")
|
54 |
+
print(dataset)
|
55 |
+
```
|
56 |
|
57 |
+
The dataset contains:
|
58 |
+
- **train**: Training set with 3752 samples
|
59 |
+
- **test**: Test set with 538 samples
|
60 |
|
61 |
+
Each sample includes:
|
62 |
+
- **Input text:** Legal case description
|
63 |
+
- **Target text:** Judicial decision
|
64 |
|
65 |
+
## Benchmark Results
|
66 |
|
67 |
+
We evaluated the dataset using **LLaMA-based models** with different configurations. Below is a summary of our findings:
|
68 |
|
69 |
+
| **Metric** | **LLaMA-3.2-3B** | **LLaMA-3.1-8B** | **LLaMA-3.2-3B-1S** | **LLaMA-3.2-3B-FT** | **LLaMA-3.1-8B-FT** |
|
70 |
+
|--------------------------|------------------|------------------|---------------------|---------------------|---------------------|
|
71 |
+
| **Coherence** | 2.69 | 5.49 | 4.52 | *6.60* | **6.94** |
|
72 |
+
| **Brevity** | 1.99 | 4.30 | 3.76 | *5.87* | **6.27** |
|
73 |
+
| **Legal Language** | 3.66 | 6.69 | 5.18 | *7.48* | **7.73** |
|
74 |
+
| **Faithfulness** | 3.00 | 5.99 | 4.00 | *6.08* | **6.42** |
|
75 |
+
| **Clarity** | 2.90 | 5.79 | 4.99 | *7.90* | **8.17** |
|
76 |
+
| **Consistency** | 3.04 | 5.93 | 5.14 | *8.47* | **8.65** |
|
77 |
+
| **Avg. Qualitative Score**| 3.01 | 5.89 | 4.66 | *7.13* | **7.44** |
|
78 |
+
| **ROUGE-1** | 0.08 | 0.12 | 0.29 | *0.50* | **0.53** |
|
79 |
+
| **ROUGE-2** | 0.02 | 0.04 | 0.19 | *0.39* | **0.41** |
|
80 |
+
| **BLEU** | 0.01 | 0.02 | 0.11 | *0.24* | **0.26** |
|
81 |
+
| **BERT** | 0.54 | 0.58 | 0.64 | *0.74* | **0.76** |
|
82 |
|
83 |
+
**Caption**: A comparative analysis of performance across different LLaMA models. The model names have been abbreviated for simplicity: **LLaMA-3.2-3B-Instruct** is represented as LLaMA-3.2-3B, **LLaMA-3.1-8B-Instruct** as LLaMA-3.1-8B, **LLaMA-3.2-3B-Instruct-1-Shot** as LLaMA-3.2-3B-1S, **LLaMA-3.2-3B-Instruct-Finetuned** as LLaMA-3.2-3B-FT, and **LLaMA-3.1-8B-Finetuned** as LLaMA-3.1-8B-FT.
|
84 |
|
85 |
+
### **Key Findings**
|
86 |
+
- Fine-tuned smaller models (**LLaMA-3.2-3B-FT**) achieve performance **comparable to larger models** (LLaMA-3.1-8B).
|
87 |
+
- Instruction-tuned models with one-shot prompting (LLaMA-3.2-3B-1S) significantly improve over zero-shot settings.
|
88 |
+
- Fine-tuning leads to a noticeable boost in **coherence, clarity, and faithfulness** of predictions.
|
89 |
|
90 |
+
## Usage
|
91 |
|
92 |
+
To use the dataset in your research, load it as follows:
|
93 |
|
94 |
+
```python
|
95 |
+
from datasets import load_dataset
|
96 |
|
97 |
+
dataset = load_dataset("mbayan/Arabic-LJP")
|
98 |
|
99 |
+
# Access train and test splits
|
100 |
+
train_data = dataset["train"]
|
101 |
+
test_data = dataset["test"]
|
102 |
+
```
|
103 |
|
104 |
+
## Repository & Implementation
|
105 |
|
106 |
+
The full implementation, including preprocessing scripts and model training code, is available in our GitHub repository:
|
107 |
|
108 |
+
🔗 **[GitHub](https://github.com/MohamedBayan/Arabic-Legal-Judgment-Prediction)**
|
109 |
|
110 |
+
## Citation
|
111 |
|
112 |
+
If you use this dataset, please cite our work:
|
113 |
|
114 |
+
```
|
115 |
+
@misc{kmainasi2025largelanguagemodelspredict,
|
116 |
+
title={Can Large Language Models Predict the Outcome of Judicial Decisions?},
|
117 |
+
author={Mohamed Bayan Kmainasi and Ali Ezzat Shahroor and Amani Al-Ghraibah},
|
118 |
+
year={2025},
|
119 |
+
eprint={2501.09768},
|
120 |
+
archivePrefix={arXiv},
|
121 |
+
primaryClass={cs.CL},
|
122 |
+
url={https://arxiv.org/abs/2501.09768},
|
123 |
+
}
|
124 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|