Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,109 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
Model weight for Fast Style Transfer
|
5 |
+
|
6 |
+
```
|
7 |
+
|
8 |
+
class TransformerNetwork(nn.Module):
|
9 |
+
"""Feedforward Transformation Network without Tanh
|
10 |
+
reference: https://arxiv.org/abs/1603.08155
|
11 |
+
exact architecture: https://cs.stanford.edu/people/jcjohns/papers/fast-style/fast-style-supp.pdf
|
12 |
+
"""
|
13 |
+
def __init__(self, tanh_multiplier=None):
|
14 |
+
super(TransformerNetwork, self).__init__()
|
15 |
+
self.ConvBlock = nn.Sequential(
|
16 |
+
ConvLayer(3, 32, 9, 1),
|
17 |
+
nn.ReLU(),
|
18 |
+
ConvLayer(32, 64, 3, 2),
|
19 |
+
nn.ReLU(),
|
20 |
+
ConvLayer(64, 128, 3, 2),
|
21 |
+
nn.ReLU()
|
22 |
+
)
|
23 |
+
self.ResidualBlock = nn.Sequential(
|
24 |
+
ResidualLayer(128, 3),
|
25 |
+
ResidualLayer(128, 3),
|
26 |
+
ResidualLayer(128, 3),
|
27 |
+
ResidualLayer(128, 3),
|
28 |
+
ResidualLayer(128, 3)
|
29 |
+
)
|
30 |
+
self.DeconvBlock = nn.Sequential(
|
31 |
+
DeconvLayer(128, 64, 3, 2, 1),
|
32 |
+
nn.ReLU(),
|
33 |
+
DeconvLayer(64, 32, 3, 2, 1),
|
34 |
+
nn.ReLU(),
|
35 |
+
ConvLayer(32, 3, 9, 1, norm="None")
|
36 |
+
)
|
37 |
+
self.tanh_multiplier = tanh_multiplier
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
x = self.ConvBlock(x)
|
41 |
+
x = self.ResidualBlock(x)
|
42 |
+
x = self.DeconvBlock(x)
|
43 |
+
if isinstance(self.tanh_multiplier, int):
|
44 |
+
x = self.tanh_multiplier * F.tanh(x)
|
45 |
+
return x
|
46 |
+
|
47 |
+
class ConvLayer(nn.Module):
|
48 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride, norm="instance"):
|
49 |
+
super(ConvLayer, self).__init__()
|
50 |
+
# Padding Layers
|
51 |
+
padding_size = kernel_size // 2
|
52 |
+
self.pad = nn.ReflectionPad2d(padding_size)
|
53 |
+
|
54 |
+
# Convolution Layer
|
55 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
|
56 |
+
|
57 |
+
# Normalization Layers
|
58 |
+
if norm == "instance":
|
59 |
+
self.norm = nn.InstanceNorm2d(out_channels, affine=True)
|
60 |
+
elif norm == "batch":
|
61 |
+
self.norm = nn.BatchNorm2d(out_channels, affine=True)
|
62 |
+
else:
|
63 |
+
self.norm = nn.Identity()
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.pad(x)
|
67 |
+
x = self.conv(x)
|
68 |
+
x = self.norm(x)
|
69 |
+
return x
|
70 |
+
|
71 |
+
class ResidualLayer(nn.Module):
|
72 |
+
"""
|
73 |
+
Deep Residual Learning for Image Recognition
|
74 |
+
https://arxiv.org/abs/1512.03385
|
75 |
+
"""
|
76 |
+
def __init__(self, channels=128, kernel_size=3):
|
77 |
+
super(ResidualLayer, self).__init__()
|
78 |
+
self.conv1 = ConvLayer(channels, channels, kernel_size, stride=1)
|
79 |
+
self.relu = nn.ReLU()
|
80 |
+
self.conv2 = ConvLayer(channels, channels, kernel_size, stride=1)
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
identity = x # preserve residual
|
84 |
+
out = self.relu(self.conv1(x)) # 1st conv layer + activation
|
85 |
+
out = self.conv2(out) # 2nd conv layer
|
86 |
+
out = out + identity # add residual
|
87 |
+
return out
|
88 |
+
|
89 |
+
class DeconvLayer(nn.Module):
|
90 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride, output_padding, norm="instance"):
|
91 |
+
super(DeconvLayer, self).__init__()
|
92 |
+
|
93 |
+
# Transposed Convolution
|
94 |
+
padding_size = kernel_size // 2
|
95 |
+
self.conv_transpose = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding_size, output_padding)
|
96 |
+
|
97 |
+
# Normalization Layers
|
98 |
+
if norm == "instance":
|
99 |
+
self.norm = nn.InstanceNorm2d(out_channels, affine=True)
|
100 |
+
elif norm == "batch":
|
101 |
+
self.norm = nn.BatchNorm2d(out_channels, affine=True)
|
102 |
+
else:
|
103 |
+
self.norm = nn.Identity()
|
104 |
+
|
105 |
+
def forward(self, x):
|
106 |
+
x = self.conv_transpose(x)
|
107 |
+
out = self.norm(x)
|
108 |
+
return out
|
109 |
+
```
|