mav23 commited on
Commit
34ff44a
·
verified ·
1 Parent(s): a6f5812

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. README.md +118 -0
  3. solar-0-70b-16bit.Q4_0.gguf +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ solar-0-70b-16bit.Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - upstage
6
+ - llama-2
7
+ - instruct
8
+ - instruction
9
+ pipeline_tag: text-generation
10
+ ---
11
+ # Updates
12
+ Solar, a new bot created by Upstage, is now available on **Poe**. As a top-ranked model on the HuggingFace Open LLM leaderboard, and a fine tune of Llama 2, Solar is a great example of the progress enabled by open source.
13
+ Try now at https://poe.com/Solar-0-70b
14
+
15
+
16
+ # SOLAR-0-70b-16bit model card
17
+ The model name has been changed from LLaMa-2-70b-instruct-v2 to SOLAR-0-70b-16bit
18
+
19
+ ## Model Details
20
+
21
+ * **Developed by**: [Upstage](https://en.upstage.ai)
22
+ * **Backbone Model**: [LLaMA-2](https://github.com/facebookresearch/llama/tree/main)
23
+ * **Language(s)**: English
24
+ * **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
25
+ * **License**: Fine-tuned checkpoints is licensed under the Non-Commercial Creative Commons license ([CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/))
26
+ * **Where to send comments**: Instructions on how to provide feedback or comments on a model can be found by opening an issue in the [Hugging Face community's model repository](https://huggingface.co/upstage/Llama-2-70b-instruct-v2/discussions)
27
+ * **Contact**: For questions and comments about the model, please email [[email protected]](mailto:[email protected])
28
+
29
+ ## Dataset Details
30
+
31
+ ### Used Datasets
32
+ - Orca-style dataset
33
+ - Alpaca-style dataset
34
+ - No other dataset was used except for the dataset mentioned above
35
+ - No benchmark test set or the training set are used
36
+
37
+
38
+ ### Prompt Template
39
+ ```
40
+ ### System:
41
+ {System}
42
+
43
+ ### User:
44
+ {User}
45
+
46
+ ### Assistant:
47
+ {Assistant}
48
+ ```
49
+
50
+ ## Usage
51
+
52
+ - The followings are tested on A100 80GB
53
+ - Our model can handle up to 10k+ input tokens, thanks to the `rope_scaling` option
54
+
55
+ ```python
56
+ import torch
57
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
58
+
59
+ tokenizer = AutoTokenizer.from_pretrained("upstage/Llama-2-70b-instruct-v2")
60
+ model = AutoModelForCausalLM.from_pretrained(
61
+ "upstage/Llama-2-70b-instruct-v2",
62
+ device_map="auto",
63
+ torch_dtype=torch.float16,
64
+ load_in_8bit=True,
65
+ rope_scaling={"type": "dynamic", "factor": 2} # allows handling of longer inputs
66
+ )
67
+
68
+ prompt = "### User:\nThomas is healthy, but he has to go to the hospital. What could be the reasons?\n\n### Assistant:\n"
69
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
70
+ del inputs["token_type_ids"]
71
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
72
+
73
+ output = model.generate(**inputs, streamer=streamer, use_cache=True, max_new_tokens=float('inf'))
74
+ output_text = tokenizer.decode(output[0], skip_special_tokens=True)
75
+ ```
76
+
77
+ ## Hardware and Software
78
+
79
+ * **Hardware**: We utilized an A100x8 * 4 for training our model
80
+ * **Training Factors**: We fine-tuned this model using a combination of the [DeepSpeed library](https://github.com/microsoft/DeepSpeed) and the [HuggingFace Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) / [HuggingFace Accelerate](https://huggingface.co/docs/accelerate/index)
81
+
82
+ ## Evaluation Results
83
+
84
+ ### Overview
85
+ - We conducted a performance evaluation following the tasks being evaluated on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
86
+ We evaluated our model on four benchmark datasets, which include `ARC-Challenge`, `HellaSwag`, `MMLU`, and `TruthfulQA`
87
+ We used the [lm-evaluation-harness repository](https://github.com/EleutherAI/lm-evaluation-harness), specifically commit [b281b0921b636bc36ad05c0b0b0763bd6dd43463](https://github.com/EleutherAI/lm-evaluation-harness/tree/b281b0921b636bc36ad05c0b0b0763bd6dd43463).
88
+ - We used [MT-bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge), a set of challenging multi-turn open-ended questions, to evaluate the models
89
+
90
+ ### Main Results
91
+ | Model | H4(Avg) | ARC | HellaSwag | MMLU | TruthfulQA | | MT_Bench |
92
+ |--------------------------------------------------------------------|----------|----------|----------|------|----------|-|-------------|
93
+ | **[Llama-2-70b-instruct-v2](https://huggingface.co/upstage/Llama-2-70b-instruct-v2)**(***Ours***, ***Open LLM Leaderboard***) | **73** | **71.1** | **87.9** | **70.6** | **62.2** | | **7.44063** |
94
+ | [Llama-2-70b-instruct](https://huggingface.co/upstage/Llama-2-70b-instruct) (Ours, Open LLM Leaderboard) | 72.3 | 70.9 | 87.5 | 69.8 | 61 | | 7.24375 |
95
+ | [llama-65b-instruct](https://huggingface.co/upstage/llama-65b-instruct) (Ours, Open LLM Leaderboard) | 69.4 | 67.6 | 86.5 | 64.9 | 58.8 | | |
96
+ | Llama-2-70b-hf | 67.3 | 67.3 | 87.3 | 69.8 | 44.9 | | |
97
+ | [llama-30b-instruct-2048](https://huggingface.co/upstage/llama-30b-instruct-2048) (Ours, Open LLM Leaderboard) | 67.0 | 64.9 | 84.9 | 61.9 | 56.3 | | |
98
+ | [llama-30b-instruct](https://huggingface.co/upstage/llama-30b-instruct) (Ours, Open LLM Leaderboard) | 65.2 | 62.5 | 86.2 | 59.4 | 52.8 | | |
99
+ | llama-65b | 64.2 | 63.5 | 86.1 | 63.9 | 43.4 | | |
100
+ | falcon-40b-instruct | 63.4 | 61.6 | 84.3 | 55.4 | 52.5 | | |
101
+
102
+ ### Scripts for H4 Score Reproduction
103
+ - Prepare evaluation environments:
104
+ ```
105
+ # clone the repository
106
+ git clone https://github.com/EleutherAI/lm-evaluation-harness.git
107
+ # check out the specific commit
108
+ git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
109
+ # change to the repository directory
110
+ cd lm-evaluation-harness
111
+ ```
112
+
113
+ ## Contact Us
114
+
115
+ ### About Upstage
116
+ - [Upstage](https://en.upstage.ai) is a company specialized in Large Language Models (LLMs) and AI. We will help you build private LLMs and related applications.
117
+ If you have a dataset to build domain specific LLMs or make LLM applications, please contact us at ► [click here to contact](https://www.upstage.ai/private-llm?utm_source=huggingface&utm_medium=link&utm_campaign=privatellm)
118
+ - As of August 1st, our 70B model has reached the top spot in openLLM rankings, marking itself as the current leading performer globally.
solar-0-70b-16bit.Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37add2bda3a72a36c8fffecfc9b66585f34ed818653c70c2e15f3d6a41bc1f1a
3
+ size 38872249792