--- license: cc-by-4.0 datasets: - mauro-nievoff/MultiCaRe_Dataset language: - en pipeline_tag: image-classification tags: - medical --- # MultiCaReClassifier for Medical Image Classification The **MultiCaReClassifier** is a model ensemble used for multilabel medical image classification. It includes classes such as: - image_type: 'radiology', 'pathology', 'endoscopy', 'ophthalmic_imaging', 'medical_photograph', 'electrography', 'chart'. - image_subtype: 'ultrasound', 'x_ray', 'ct', 'mri', 'h&e', 'immunostaining', 'fundus_photograph', 'ekg', 'eeg', etc. - radiology_region: 'thorax', 'head', 'abdomen', 'upper_limb', 'lower_limb', etc. - radiology_view: 'frontal', 'sagittal', 'axial', 'oblique', etc. 1. Clone this repo: ``` !git clone https://huggingface.co/mauro-nievoff/MultiCaReClassifier ``` 2. Change the directory: ``` %cd /content/MultiCaReClassifier ``` 3. Import the MultiCaReClassifier class: ``` from MultiCaReClassifier.pipeline import * ``` 4. Get the predictions for a given image folder: ``` predictions = MultiCaReClassifier(image_folder = '/content/img') predictions.data.head() ``` - **Model Training by:** Facundo Roffet - **Data Curation and Postprocessing by:** Mauro Nievas Offidani