--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5708 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0536 | 1.0 | 75 | 1.9482 | 0.35 | | 1.4103 | 2.0 | 150 | 1.4342 | 0.63 | | 1.1862 | 3.0 | 225 | 1.1184 | 0.7 | | 0.8092 | 4.0 | 300 | 0.9554 | 0.73 | | 0.5852 | 5.0 | 375 | 0.7298 | 0.84 | | 0.5186 | 6.0 | 450 | 0.6516 | 0.83 | | 0.4123 | 7.0 | 525 | 0.6696 | 0.79 | | 0.3285 | 8.0 | 600 | 0.5844 | 0.86 | | 0.328 | 9.0 | 675 | 0.6136 | 0.83 | | 0.2715 | 10.0 | 750 | 0.5708 | 0.83 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0