--- library_name: transformers tags: [] --- # Quality Improving Stated Aim Classifier This is an XLM-RoBERTa-large model that is trained to classify whether an explicit stated aim described in a British [historical patent](https://huggingface.co/datasets/matthewleechen/300YearsOfBritishPatents) is designed to improve quality, reliability or durability. Hyperparameters: - lr = 3e-5 - batch size = 44 Validation set results: ```text {'eval_loss': 0.543449342250824, 'eval_accuracy': 0.925, 'eval_precision': 0.9333333333333332, 'eval_recall': 0.925, 'eval_f1': 0.9233265720081135, 'eval_runtime': 0.5431, 'eval_samples_per_second': 73.652, 'eval_steps_per_second': 1.841} ``` Test set results: ```text {'eval_loss': 0.7934615015983582, 'eval_accuracy': 0.875, 'eval_precision': 0.8785266457680251, 'eval_recall': 0.875, 'eval_f1': 0.8709090909090909, 'eval_runtime': 0.6533, 'eval_samples_per_second': 61.226, 'eval_steps_per_second': 1.531} ```