Add files using upload-large-folder tool
Browse files- .gitattributes +1 -0
- .ipynb_checkpoints/data_split_test-checkpoint.csv +0 -0
- README.md +214 -0
- classification_report_lr_5.0000000000e-05_test.csv +10 -0
- classification_report_lr_5.0000000000e-05_val.csv +10 -0
- config.json +58 -0
- data_split_test.csv +0 -0
- data_split_train.csv +0 -0
- data_split_val.csv +0 -0
- labelled_data.conll +0 -0
- model.safetensors +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- test_set_predictions.json +0 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
.ipynb_checkpoints/data_split_test-checkpoint.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
README.md
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
base_model:
|
5 |
+
- FacebookAI/xlm-roberta-large
|
6 |
+
pipeline_tag: token-classification
|
7 |
+
library_name: transformers
|
8 |
+
---
|
9 |
+
|
10 |
+
# Patent Entity Extraction Model
|
11 |
+
|
12 |
+
### Model Description
|
13 |
+
|
14 |
+
**patent_entities_ner** is a fine-tuned [XLM-RoBERTa-large](https://huggingface.co/FacebookAI/xlm-roberta-large) model that has been trained on a custom dataset of OCR'd front pages of patent specifications published by the British Patent Office, and filed between 1617-1899.
|
15 |
+
|
16 |
+
It has been trained to recognize six classes of named entities:
|
17 |
+
|
18 |
+
- PER: full name of inventor
|
19 |
+
- OCC: occupation of inventor
|
20 |
+
- ADD: full (permanent) address of inventor
|
21 |
+
- DATE: patent filing, submission, or approval dates
|
22 |
+
- FIRM: name of firm affiliated with inventor
|
23 |
+
- COMM: name and information mentioned about communicant
|
24 |
+
|
25 |
+
We take the original xlm-roberta-large [weights](https://huggingface.co/FacebookAI/xlm-roberta-large/blob/main/pytorch_model.bin) and fine tune on our custom dataset for 29 epochs with a learning rate of 5e-05 and a batch size of 21. We chose the learning rate by tuning on the validation set.
|
26 |
+
|
27 |
+
### Usage
|
28 |
+
|
29 |
+
This model can be used with HuggingFace Transformer's Pipelines API for NER:
|
30 |
+
|
31 |
+
```python
|
32 |
+
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained("gbpatentdata/patent_entities_ner")
|
35 |
+
model = AutoModelForTokenClassification.from_pretrained("gbpatentdata/patent_entities_ner")
|
36 |
+
|
37 |
+
|
38 |
+
def custom_recognizer(text, model=model, tokenizer=tokenizer, device=0):
|
39 |
+
|
40 |
+
# HF ner pipeline
|
41 |
+
token_level_results = pipeline("ner", model=model, device=0, tokenizer=tokenizer)(text)
|
42 |
+
|
43 |
+
# keep entities tracked
|
44 |
+
entities = []
|
45 |
+
current_entity = None
|
46 |
+
|
47 |
+
for item in token_level_results:
|
48 |
+
|
49 |
+
tag = item['entity']
|
50 |
+
|
51 |
+
# replace '▁' with space for easier reading (_ is created by the XLM-RoBERTa tokenizer)
|
52 |
+
word = item['word'].replace('▁', ' ')
|
53 |
+
|
54 |
+
# aggregate I-O-B tagged entities
|
55 |
+
if tag.startswith('B-'):
|
56 |
+
|
57 |
+
if current_entity:
|
58 |
+
entities.append(current_entity)
|
59 |
+
|
60 |
+
current_entity = {'type': tag[2:], 'text': word.strip(), 'start': item['start'], 'end': item['end']}
|
61 |
+
|
62 |
+
elif tag.startswith('I-'):
|
63 |
+
|
64 |
+
if current_entity and tag[2:] == current_entity['type']:
|
65 |
+
current_entity['text'] += word
|
66 |
+
current_entity['end'] = item['end']
|
67 |
+
|
68 |
+
else:
|
69 |
+
|
70 |
+
if current_entity:
|
71 |
+
entities.append(current_entity)
|
72 |
+
|
73 |
+
current_entity = {'type': tag[2:], 'text': word.strip(), 'start': item['start'], 'end': item['end']}
|
74 |
+
|
75 |
+
else:
|
76 |
+
# deal with O tag
|
77 |
+
if current_entity:
|
78 |
+
entities.append(current_entity)
|
79 |
+
current_entity = None
|
80 |
+
|
81 |
+
if current_entity:
|
82 |
+
# add to entities
|
83 |
+
entities.append(current_entity)
|
84 |
+
|
85 |
+
# track entity merges
|
86 |
+
merged_entities = []
|
87 |
+
|
88 |
+
# merge entities of the same type
|
89 |
+
for entity in entities:
|
90 |
+
if merged_entities and merged_entities[-1]['type'] == entity['type'] and merged_entities[-1]['end'] == entity['start']:
|
91 |
+
merged_entities[-1]['text'] += entity['text']
|
92 |
+
merged_entities[-1]['end'] = entity['end']
|
93 |
+
else:
|
94 |
+
merged_entities.append(entity)
|
95 |
+
|
96 |
+
# clean up extra spaces
|
97 |
+
for entity in merged_entities:
|
98 |
+
entity['text'] = ' '.join(entity['text'].split())
|
99 |
+
|
100 |
+
# convert to list of dicts
|
101 |
+
return [{'class': entity['type'],
|
102 |
+
'entity_text': entity['text'],
|
103 |
+
'start': entity['start'],
|
104 |
+
'end': entity['end']} for entity in merged_entities]
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
example = """
|
109 |
+
Date of Application, 1st Aug., 1890-Accepted, 6th Sept., 1890
|
110 |
+
COMPLETE SPECIFICATION.
|
111 |
+
Improvements in Coin-freed Apparatus for the Sale of Goods.
|
112 |
+
I, CHARLES LOTINGA, of 33 Cambridge Street, Lower Grange, Cardiff, in the County of Glamorgan, Gentleman,
|
113 |
+
do hereby declare the nature of this invention and in what manner the same is to be performed,
|
114 |
+
to be particularly described and ascertained in and by the following statement
|
115 |
+
"""
|
116 |
+
|
117 |
+
ner_results = custom_recognizer(example)
|
118 |
+
print(ner_results)
|
119 |
+
```
|
120 |
+
|
121 |
+
### Training Data
|
122 |
+
|
123 |
+
The custom dataset of front page texts of patent specifications was assembled in the following steps:
|
124 |
+
|
125 |
+
1. We fine tuned a YOLO vision [model](https://huggingface.co/gbpatentdata/yolov8_patent_layouts) to detect bounding boxes around text. We use this to identify text regions on the front pages of patent specifications.
|
126 |
+
2. We use [Google Cloud Vision](https://cloud.google.com/vision?hl=en) to OCR the detected text regions, and then concatenate the OCR text.
|
127 |
+
3. We randomly sample 200 front page texts (and another 201 oversampled from those that contain either firm or communicant information).
|
128 |
+
|
129 |
+
Our custom dataset has accurate manual labels created jointly by an undergraduate student and an economics professor. The final dataset is split 60-20-20 (train-val-test). In the event that the front page text is too long, we restrict the text to the first 512 tokens.
|
130 |
+
|
131 |
+
### Evaluation
|
132 |
+
|
133 |
+
Our evaluation metric is F1 at the full entity-level. That is, we aggregated adjacent-indexed entities into full entities and computed F1 scores requiring an exact match. These scores for the test set are below.
|
134 |
+
|
135 |
+
<table>
|
136 |
+
<thead>
|
137 |
+
<tr>
|
138 |
+
<th>Full Entity</th>
|
139 |
+
<th>Precision</th>
|
140 |
+
<th>Recall</th>
|
141 |
+
<th>F1-Score</th>
|
142 |
+
</tr>
|
143 |
+
</thead>
|
144 |
+
<tbody>
|
145 |
+
<tr>
|
146 |
+
<td>PER</td>
|
147 |
+
<td>92.2%</td>
|
148 |
+
<td>97.7%</td>
|
149 |
+
<td>94.9%</td>
|
150 |
+
</tr>
|
151 |
+
<tr>
|
152 |
+
<td>OCC</td>
|
153 |
+
<td>93.8%</td>
|
154 |
+
<td>93.8%</td>
|
155 |
+
<td>93.8%</td>
|
156 |
+
</tr>
|
157 |
+
<tr>
|
158 |
+
<td>ADD</td>
|
159 |
+
<td>88.6%</td>
|
160 |
+
<td>91.2%</td>
|
161 |
+
<td>89.9%</td>
|
162 |
+
</tr>
|
163 |
+
<tr>
|
164 |
+
<td>DATE</td>
|
165 |
+
<td>93.7%</td>
|
166 |
+
<td>98.7%</td>
|
167 |
+
<td>96.1%</td>
|
168 |
+
</tr>
|
169 |
+
<tr>
|
170 |
+
<td>FIRM</td>
|
171 |
+
<td>64.0%</td>
|
172 |
+
<td>94.1%</td>
|
173 |
+
<td>76.2%</td>
|
174 |
+
</tr>
|
175 |
+
<tr>
|
176 |
+
<td>COMM</td>
|
177 |
+
<td>77.1%</td>
|
178 |
+
<td>87.1%</td>
|
179 |
+
<td>81.8%</td>
|
180 |
+
</tr>
|
181 |
+
<tr>
|
182 |
+
<td>Overall (micro avg)</td>
|
183 |
+
<td>89.9%</td>
|
184 |
+
<td>95.3%</td>
|
185 |
+
<td>92.5%</td>
|
186 |
+
</tr>
|
187 |
+
<tr>
|
188 |
+
<td>Overall (macro avg)</td>
|
189 |
+
<td>84.9%</td>
|
190 |
+
<td>93.8%</td>
|
191 |
+
<td>88.9%</td>
|
192 |
+
</tr>
|
193 |
+
<tr>
|
194 |
+
<td>Overall (weighted avg)</td>
|
195 |
+
<td>90.3%</td>
|
196 |
+
<td>95.3%</td>
|
197 |
+
<td>92.7%</td>
|
198 |
+
</tr>
|
199 |
+
</tbody>
|
200 |
+
</table>
|
201 |
+
|
202 |
+
## Citation
|
203 |
+
|
204 |
+
If you use our model or custom training/evaluation data in your research, please cite our accompanying paper as follows:
|
205 |
+
|
206 |
+
```bibtex
|
207 |
+
@article{bct2025,
|
208 |
+
title = {300 Years of British Patents},
|
209 |
+
author = {Enrico Berkes and Matthew Lee Chen and Matteo Tranchero},
|
210 |
+
journal = {arXiv preprint arXiv:2401.12345},
|
211 |
+
year = {2025},
|
212 |
+
url = {https://arxiv.org/abs/2401.12345}
|
213 |
+
}
|
214 |
+
```
|
classification_report_lr_5.0000000000e-05_test.csv
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Entity,Precision,Recall,F1-Score,Support
|
2 |
+
PER,0.9220,0.9774,0.9489,133
|
3 |
+
FIRM,0.6400,0.9412,0.7619,17
|
4 |
+
COMM,0.7714,0.8710,0.8182,31
|
5 |
+
DATE,0.9367,0.9867,0.9610,150
|
6 |
+
ADD,0.8857,0.9118,0.8986,102
|
7 |
+
OCC,0.9383,0.9383,0.9383,81
|
8 |
+
micro avg,0.8991,0.9533,0.9254,514
|
9 |
+
macro avg,0.8490,0.9377,0.8878,514
|
10 |
+
weighted avg,0.9032,0.9533,0.9267,514
|
classification_report_lr_5.0000000000e-05_val.csv
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Entity,Precision,Recall,F1-Score,Support
|
2 |
+
OCC,0.9222,0.9540,0.9379,87
|
3 |
+
PER,0.9530,0.9793,0.9660,145
|
4 |
+
DATE,0.9732,1.0000,0.9864,145
|
5 |
+
ADD,0.8785,0.9216,0.8995,102
|
6 |
+
COMM,0.9062,0.9355,0.9206,31
|
7 |
+
FIRM,0.7368,0.8750,0.8000,16
|
8 |
+
micro avg,0.9286,0.9639,0.9459,526
|
9 |
+
macro avg,0.8950,0.9442,0.9184,526
|
10 |
+
weighted avg,0.9297,0.9639,0.9463,526
|
config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "xlm-roberta-large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"id2label": {
|
14 |
+
"0": "B-ADD",
|
15 |
+
"1": "B-COMM",
|
16 |
+
"2": "B-DATE",
|
17 |
+
"3": "B-FIRM",
|
18 |
+
"4": "B-OCC",
|
19 |
+
"5": "B-PER",
|
20 |
+
"6": "I-ADD",
|
21 |
+
"7": "I-COMM",
|
22 |
+
"8": "I-DATE",
|
23 |
+
"9": "I-FIRM",
|
24 |
+
"10": "I-OCC",
|
25 |
+
"11": "I-PER",
|
26 |
+
"12": "O"
|
27 |
+
},
|
28 |
+
"initializer_range": 0.02,
|
29 |
+
"intermediate_size": 4096,
|
30 |
+
"label2id": {
|
31 |
+
"B-ADD": 0,
|
32 |
+
"B-COMM": 1,
|
33 |
+
"B-DATE": 2,
|
34 |
+
"B-FIRM": 3,
|
35 |
+
"B-OCC": 4,
|
36 |
+
"B-PER": 5,
|
37 |
+
"I-ADD": 6,
|
38 |
+
"I-COMM": 7,
|
39 |
+
"I-DATE": 8,
|
40 |
+
"I-FIRM": 9,
|
41 |
+
"I-OCC": 10,
|
42 |
+
"I-PER": 11,
|
43 |
+
"O": 12
|
44 |
+
},
|
45 |
+
"layer_norm_eps": 1e-05,
|
46 |
+
"max_position_embeddings": 514,
|
47 |
+
"model_type": "xlm-roberta",
|
48 |
+
"num_attention_heads": 16,
|
49 |
+
"num_hidden_layers": 24,
|
50 |
+
"output_past": true,
|
51 |
+
"pad_token_id": 1,
|
52 |
+
"position_embedding_type": "absolute",
|
53 |
+
"torch_dtype": "float32",
|
54 |
+
"transformers_version": "4.44.2",
|
55 |
+
"type_vocab_size": 1,
|
56 |
+
"use_cache": true,
|
57 |
+
"vocab_size": 250002
|
58 |
+
}
|
data_split_test.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data_split_train.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data_split_val.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
labelled_data.conll
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23a649001c7829253d55b444ef96efb2748c2c1d6c9643972857373bf4a924a4
|
3 |
+
size 2235465156
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
test_set_predictions.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ffb37461c391f096759f4a9bbbc329da0f36952f88bab061fcf84940c022e98
|
3 |
+
size 17082999
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|