matthewleechen/tech_classes_multilabel_classifier
Browse files- .gitattributes +1 -0
- README.md +77 -0
- config.json +325 -0
- model.safetensors +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
- training_args.bin +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: FacebookAI/xlm-roberta-large
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: multiclass-classifier-patents
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# multiclass-classifier-patents
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0067
|
20 |
+
- F1 Micro: 0.7001
|
21 |
+
- Precision Micro: 0.8337
|
22 |
+
- Recall Micro: 0.6034
|
23 |
+
- Exact Match F1: 0.5296
|
24 |
+
- Exact Match Precision: 0.5296
|
25 |
+
- Exact Match Recall: 0.5296
|
26 |
+
- Any Match F1: 0.9079
|
27 |
+
- Any Match Precision: 0.9079
|
28 |
+
- Any Match Recall: 0.9079
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 64
|
49 |
+
- eval_batch_size: 64
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 10
|
54 |
+
- mixed_precision_training: Native AMP
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 Micro | Precision Micro | Recall Micro | Exact Match F1 | Exact Match Precision | Exact Match Recall | Any Match F1 | Any Match Precision | Any Match Recall |
|
59 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------------:|:------------:|:--------------:|:---------------------:|:------------------:|:------------:|:-------------------:|:----------------:|
|
60 |
+
| 0.01 | 1.0 | 1292 | 0.0083 | 0.5977 | 0.8265 | 0.4681 | 0.4300 | 0.4300 | 0.4300 | 0.7675 | 0.7675 | 0.7675 |
|
61 |
+
| 0.0077 | 2.0 | 2584 | 0.0074 | 0.6595 | 0.8326 | 0.5460 | 0.4879 | 0.4879 | 0.4879 | 0.8636 | 0.8636 | 0.8636 |
|
62 |
+
| 0.007 | 3.0 | 3876 | 0.0071 | 0.6829 | 0.8173 | 0.5864 | 0.5035 | 0.5035 | 0.5035 | 0.8958 | 0.8958 | 0.8958 |
|
63 |
+
| 0.0063 | 4.0 | 5168 | 0.0069 | 0.6883 | 0.8317 | 0.5871 | 0.5140 | 0.5140 | 0.5140 | 0.8956 | 0.8956 | 0.8956 |
|
64 |
+
| 0.0058 | 5.0 | 6460 | 0.0068 | 0.6957 | 0.8337 | 0.5969 | 0.5182 | 0.5182 | 0.5182 | 0.9058 | 0.9058 | 0.9058 |
|
65 |
+
| 0.0053 | 6.0 | 7752 | 0.0069 | 0.6999 | 0.8366 | 0.6017 | 0.5271 | 0.5271 | 0.5271 | 0.9082 | 0.9082 | 0.9082 |
|
66 |
+
| 0.0048 | 7.0 | 9044 | 0.0069 | 0.7046 | 0.8159 | 0.6201 | 0.5225 | 0.5225 | 0.5225 | 0.9185 | 0.9185 | 0.9185 |
|
67 |
+
| 0.0046 | 8.0 | 10336 | 0.0069 | 0.7069 | 0.8100 | 0.6271 | 0.5241 | 0.5241 | 0.5241 | 0.9196 | 0.9196 | 0.9196 |
|
68 |
+
| 0.0042 | 9.0 | 11628 | 0.0070 | 0.7064 | 0.8208 | 0.6200 | 0.5282 | 0.5282 | 0.5282 | 0.9174 | 0.9174 | 0.9174 |
|
69 |
+
| 0.004 | 10.0 | 12920 | 0.0070 | 0.7064 | 0.8184 | 0.6214 | 0.5276 | 0.5276 | 0.5276 | 0.9177 | 0.9177 | 0.9177 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.45.2
|
75 |
+
- Pytorch 2.0.1+cu117
|
76 |
+
- Datasets 3.0.1
|
77 |
+
- Tokenizers 0.20.3
|
config.json
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "FacebookAI/xlm-roberta-large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"id2label": {
|
14 |
+
"0": "Acids and salts, etc",
|
15 |
+
"1": "Acids, alkalis, etc",
|
16 |
+
"2": "Advertising",
|
17 |
+
"3": "Aeronautics",
|
18 |
+
"4": "Agricultural appliances, farmyard",
|
19 |
+
"5": "Agricultural appliances, for treatment of land, etc.",
|
20 |
+
"6": "Air and gas engines",
|
21 |
+
"7": "Air and gases, compressing, etc",
|
22 |
+
"8": "Ammunition",
|
23 |
+
"9": "Animal powered engines",
|
24 |
+
"10": "Artists' instruments",
|
25 |
+
"11": "Bearings, etc.",
|
26 |
+
"12": "Bells, etc",
|
27 |
+
"13": "Beverages",
|
28 |
+
"14": "Bleaching, etc.",
|
29 |
+
"15": "Books",
|
30 |
+
"16": "Boots, etc",
|
31 |
+
"17": "Boxes, etc",
|
32 |
+
"18": "Brushing, etc",
|
33 |
+
"19": "Buildings",
|
34 |
+
"20": "Casks",
|
35 |
+
"21": "Cements",
|
36 |
+
"22": "Centrifugal drying",
|
37 |
+
"23": "Chains",
|
38 |
+
"24": "Chimneys",
|
39 |
+
"25": "Closets",
|
40 |
+
"26": "Coin-feed apparatus",
|
41 |
+
"27": "Cooking, etc",
|
42 |
+
"28": "Cooling",
|
43 |
+
"29": "Cutlery",
|
44 |
+
"30": "Cutting",
|
45 |
+
"31": "Distilling",
|
46 |
+
"32": "Drains",
|
47 |
+
"33": "Drying",
|
48 |
+
"34": "Dynamo electric generators",
|
49 |
+
"35": "Electric lamps",
|
50 |
+
"36": "Electric telegraphs",
|
51 |
+
"37": "Electricity conducting",
|
52 |
+
"38": "Electricity measuring",
|
53 |
+
"39": "Electricity regulating",
|
54 |
+
"40": "Electrolysis",
|
55 |
+
"41": "Fabrics, dressing",
|
56 |
+
"42": "Fastenings, dress",
|
57 |
+
"43": "Fastenings, lock",
|
58 |
+
"44": "Fencing",
|
59 |
+
"45": "Filtering",
|
60 |
+
"46": "Fire extinction",
|
61 |
+
"47": "Fish",
|
62 |
+
"48": "Food",
|
63 |
+
"49": "Fuel, manufacture",
|
64 |
+
"50": "Furnaces",
|
65 |
+
"51": "Furniture",
|
66 |
+
"52": "Galvanic batteries",
|
67 |
+
"53": "Gas distribution",
|
68 |
+
"54": "Gas manufacture",
|
69 |
+
"55": "Glass",
|
70 |
+
"56": "Governors",
|
71 |
+
"57": "Grain",
|
72 |
+
"58": "Grinding and crushing",
|
73 |
+
"59": "Grinding or abrading",
|
74 |
+
"60": "Hand tools",
|
75 |
+
"61": "Harness",
|
76 |
+
"62": "Hats",
|
77 |
+
"63": "Heating",
|
78 |
+
"64": "Hinges",
|
79 |
+
"65": "Hollow-ware",
|
80 |
+
"66": "Horse-shoes",
|
81 |
+
"67": "Hydraulic engineering",
|
82 |
+
"68": "Hydraulic machinery",
|
83 |
+
"69": "India-rubber",
|
84 |
+
"70": "Injectors",
|
85 |
+
"71": "Iron",
|
86 |
+
"72": "Labels",
|
87 |
+
"73": "Lace-making",
|
88 |
+
"74": "Lamps",
|
89 |
+
"75": "Leather",
|
90 |
+
"76": "Life-saving",
|
91 |
+
"77": "Lifting",
|
92 |
+
"78": "Locomotives",
|
93 |
+
"79": "Mechanism",
|
94 |
+
"80": "Medicine",
|
95 |
+
"81": "Metals and alloys",
|
96 |
+
"82": "Metals, Cutting, etc",
|
97 |
+
"83": "Milking",
|
98 |
+
"84": "Mining",
|
99 |
+
"85": "Mixing",
|
100 |
+
"86": "Moulding",
|
101 |
+
"87": "Music",
|
102 |
+
"88": "Nails",
|
103 |
+
"89": "Non-metallic elements",
|
104 |
+
"90": "Oils",
|
105 |
+
"91": "Ordnance",
|
106 |
+
"92": "Ornamenting",
|
107 |
+
"93": "Packing",
|
108 |
+
"94": "Paints",
|
109 |
+
"95": "Paper",
|
110 |
+
"96": "Philosophical instruments",
|
111 |
+
"97": "Photography",
|
112 |
+
"98": "Pipes",
|
113 |
+
"99": "Printing, letterpress",
|
114 |
+
"100": "Printing, other",
|
115 |
+
"101": "Pumps",
|
116 |
+
"102": "Railway etc. vehicles",
|
117 |
+
"103": "Railway signals",
|
118 |
+
"104": "Railways, etc.",
|
119 |
+
"105": "Registering",
|
120 |
+
"106": "Road vehicles",
|
121 |
+
"107": "Roads",
|
122 |
+
"108": "Ropes",
|
123 |
+
"109": "Rotary engines",
|
124 |
+
"110": "Sewage",
|
125 |
+
"111": "Sewing",
|
126 |
+
"112": "Ships, Div I",
|
127 |
+
"113": "Ships, Div II",
|
128 |
+
"114": "Ships, Div III",
|
129 |
+
"115": "Shop accessories",
|
130 |
+
"116": "Sifting",
|
131 |
+
"117": "Signalling",
|
132 |
+
"118": "Small arms",
|
133 |
+
"119": "Spinning",
|
134 |
+
"120": "Starch",
|
135 |
+
"121": "Steam engines",
|
136 |
+
"122": "Steam generators",
|
137 |
+
"123": "Stone",
|
138 |
+
"124": "Stoppering",
|
139 |
+
"125": "Stoves",
|
140 |
+
"126": "Sugar",
|
141 |
+
"127": "Table articles",
|
142 |
+
"128": "Tea",
|
143 |
+
"129": "Tobacco",
|
144 |
+
"130": "Toilet",
|
145 |
+
"131": "Toys",
|
146 |
+
"132": "Trunks",
|
147 |
+
"133": "Umbrellas",
|
148 |
+
"134": "Valves",
|
149 |
+
"135": "Velocipedes",
|
150 |
+
"136": "Ventilation",
|
151 |
+
"137": "Washing",
|
152 |
+
"138": "Watches",
|
153 |
+
"139": "Waterproof fabrics",
|
154 |
+
"140": "Wearing apparel",
|
155 |
+
"141": "Weaving",
|
156 |
+
"142": "Weighing apparatus",
|
157 |
+
"143": "Wheels",
|
158 |
+
"144": "Wood",
|
159 |
+
"145": "Writing instruments"
|
160 |
+
},
|
161 |
+
"initializer_range": 0.02,
|
162 |
+
"intermediate_size": 4096,
|
163 |
+
"label2id": {
|
164 |
+
"Acids and salts, etc": 0,
|
165 |
+
"Acids, alkalis, etc": 1,
|
166 |
+
"Advertising": 2,
|
167 |
+
"Aeronautics": 3,
|
168 |
+
"Agricultural appliances, farmyard": 4,
|
169 |
+
"Agricultural appliances, for treatment of land, etc.": 5,
|
170 |
+
"Air and gas engines": 6,
|
171 |
+
"Air and gases, compressing, etc": 7,
|
172 |
+
"Ammunition": 8,
|
173 |
+
"Animal powered engines": 9,
|
174 |
+
"Artists' instruments": 10,
|
175 |
+
"Bearings, etc.": 11,
|
176 |
+
"Bells, etc": 12,
|
177 |
+
"Beverages": 13,
|
178 |
+
"Bleaching, etc.": 14,
|
179 |
+
"Books": 15,
|
180 |
+
"Boots, etc": 16,
|
181 |
+
"Boxes, etc": 17,
|
182 |
+
"Brushing, etc": 18,
|
183 |
+
"Buildings": 19,
|
184 |
+
"Casks": 20,
|
185 |
+
"Cements": 21,
|
186 |
+
"Centrifugal drying": 22,
|
187 |
+
"Chains": 23,
|
188 |
+
"Chimneys": 24,
|
189 |
+
"Closets": 25,
|
190 |
+
"Coin-feed apparatus": 26,
|
191 |
+
"Cooking, etc": 27,
|
192 |
+
"Cooling": 28,
|
193 |
+
"Cutlery": 29,
|
194 |
+
"Cutting": 30,
|
195 |
+
"Distilling": 31,
|
196 |
+
"Drains": 32,
|
197 |
+
"Drying": 33,
|
198 |
+
"Dynamo electric generators": 34,
|
199 |
+
"Electric lamps": 35,
|
200 |
+
"Electric telegraphs": 36,
|
201 |
+
"Electricity conducting": 37,
|
202 |
+
"Electricity measuring": 38,
|
203 |
+
"Electricity regulating": 39,
|
204 |
+
"Electrolysis": 40,
|
205 |
+
"Fabrics, dressing": 41,
|
206 |
+
"Fastenings, dress": 42,
|
207 |
+
"Fastenings, lock": 43,
|
208 |
+
"Fencing": 44,
|
209 |
+
"Filtering": 45,
|
210 |
+
"Fire extinction": 46,
|
211 |
+
"Fish": 47,
|
212 |
+
"Food": 48,
|
213 |
+
"Fuel, manufacture": 49,
|
214 |
+
"Furnaces": 50,
|
215 |
+
"Furniture": 51,
|
216 |
+
"Galvanic batteries": 52,
|
217 |
+
"Gas distribution": 53,
|
218 |
+
"Gas manufacture": 54,
|
219 |
+
"Glass": 55,
|
220 |
+
"Governors": 56,
|
221 |
+
"Grain": 57,
|
222 |
+
"Grinding and crushing": 58,
|
223 |
+
"Grinding or abrading": 59,
|
224 |
+
"Hand tools": 60,
|
225 |
+
"Harness": 61,
|
226 |
+
"Hats": 62,
|
227 |
+
"Heating": 63,
|
228 |
+
"Hinges": 64,
|
229 |
+
"Hollow-ware": 65,
|
230 |
+
"Horse-shoes": 66,
|
231 |
+
"Hydraulic engineering": 67,
|
232 |
+
"Hydraulic machinery": 68,
|
233 |
+
"India-rubber": 69,
|
234 |
+
"Injectors": 70,
|
235 |
+
"Iron": 71,
|
236 |
+
"Labels": 72,
|
237 |
+
"Lace-making": 73,
|
238 |
+
"Lamps": 74,
|
239 |
+
"Leather": 75,
|
240 |
+
"Life-saving": 76,
|
241 |
+
"Lifting": 77,
|
242 |
+
"Locomotives": 78,
|
243 |
+
"Mechanism": 79,
|
244 |
+
"Medicine": 80,
|
245 |
+
"Metals and alloys": 81,
|
246 |
+
"Metals, Cutting, etc": 82,
|
247 |
+
"Milking": 83,
|
248 |
+
"Mining": 84,
|
249 |
+
"Mixing": 85,
|
250 |
+
"Moulding": 86,
|
251 |
+
"Music": 87,
|
252 |
+
"Nails": 88,
|
253 |
+
"Non-metallic elements": 89,
|
254 |
+
"Oils": 90,
|
255 |
+
"Ordnance": 91,
|
256 |
+
"Ornamenting": 92,
|
257 |
+
"Packing": 93,
|
258 |
+
"Paints": 94,
|
259 |
+
"Paper": 95,
|
260 |
+
"Philosophical instruments": 96,
|
261 |
+
"Photography": 97,
|
262 |
+
"Pipes": 98,
|
263 |
+
"Printing, letterpress": 99,
|
264 |
+
"Printing, other": 100,
|
265 |
+
"Pumps": 101,
|
266 |
+
"Railway etc. vehicles": 102,
|
267 |
+
"Railway signals": 103,
|
268 |
+
"Railways, etc.": 104,
|
269 |
+
"Registering": 105,
|
270 |
+
"Road vehicles": 106,
|
271 |
+
"Roads": 107,
|
272 |
+
"Ropes": 108,
|
273 |
+
"Rotary engines": 109,
|
274 |
+
"Sewage": 110,
|
275 |
+
"Sewing": 111,
|
276 |
+
"Ships, Div I": 112,
|
277 |
+
"Ships, Div II": 113,
|
278 |
+
"Ships, Div III": 114,
|
279 |
+
"Shop accessories": 115,
|
280 |
+
"Sifting": 116,
|
281 |
+
"Signalling": 117,
|
282 |
+
"Small arms": 118,
|
283 |
+
"Spinning": 119,
|
284 |
+
"Starch": 120,
|
285 |
+
"Steam engines": 121,
|
286 |
+
"Steam generators": 122,
|
287 |
+
"Stone": 123,
|
288 |
+
"Stoppering": 124,
|
289 |
+
"Stoves": 125,
|
290 |
+
"Sugar": 126,
|
291 |
+
"Table articles": 127,
|
292 |
+
"Tea": 128,
|
293 |
+
"Tobacco": 129,
|
294 |
+
"Toilet": 130,
|
295 |
+
"Toys": 131,
|
296 |
+
"Trunks": 132,
|
297 |
+
"Umbrellas": 133,
|
298 |
+
"Valves": 134,
|
299 |
+
"Velocipedes": 135,
|
300 |
+
"Ventilation": 136,
|
301 |
+
"Washing": 137,
|
302 |
+
"Watches": 138,
|
303 |
+
"Waterproof fabrics": 139,
|
304 |
+
"Wearing apparel": 140,
|
305 |
+
"Weaving": 141,
|
306 |
+
"Weighing apparatus": 142,
|
307 |
+
"Wheels": 143,
|
308 |
+
"Wood": 144,
|
309 |
+
"Writing instruments": 145
|
310 |
+
},
|
311 |
+
"layer_norm_eps": 1e-05,
|
312 |
+
"max_position_embeddings": 514,
|
313 |
+
"model_type": "xlm-roberta",
|
314 |
+
"num_attention_heads": 16,
|
315 |
+
"num_hidden_layers": 24,
|
316 |
+
"output_past": true,
|
317 |
+
"pad_token_id": 1,
|
318 |
+
"position_embedding_type": "absolute",
|
319 |
+
"problem_type": "multi_label_classification",
|
320 |
+
"torch_dtype": "float32",
|
321 |
+
"transformers_version": "4.45.2",
|
322 |
+
"type_vocab_size": 1,
|
323 |
+
"use_cache": true,
|
324 |
+
"vocab_size": 250002
|
325 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96a56c2c1fad39866ffaab66bc587d3779d78981fb7cdc2398d5ec5698691978
|
3 |
+
size 2240209072
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:646efe9826de9de2211c1afbebfe650c28f615b124aeb4c5ed4805cf9014947d
|
3 |
+
size 17082999
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd5b4cf9450b71c0b853ece3b2e6b27d7a0d1af1e08768f295e0284af523c018
|
3 |
+
size 4795
|