matthewleechen commited on
Commit
47b17e3
·
verified ·
1 Parent(s): 7e03edb

matthewleechen/tech_classes_multilabel_classifier

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: FacebookAI/xlm-roberta-large
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: multiclass-classifier-patents
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # multiclass-classifier-patents
16
+
17
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0067
20
+ - F1 Micro: 0.7001
21
+ - Precision Micro: 0.8337
22
+ - Recall Micro: 0.6034
23
+ - Exact Match F1: 0.5296
24
+ - Exact Match Precision: 0.5296
25
+ - Exact Match Recall: 0.5296
26
+ - Any Match F1: 0.9079
27
+ - Any Match Precision: 0.9079
28
+ - Any Match Recall: 0.9079
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 64
49
+ - eval_batch_size: 64
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 10
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | F1 Micro | Precision Micro | Recall Micro | Exact Match F1 | Exact Match Precision | Exact Match Recall | Any Match F1 | Any Match Precision | Any Match Recall |
59
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------------:|:------------:|:--------------:|:---------------------:|:------------------:|:------------:|:-------------------:|:----------------:|
60
+ | 0.01 | 1.0 | 1292 | 0.0083 | 0.5977 | 0.8265 | 0.4681 | 0.4300 | 0.4300 | 0.4300 | 0.7675 | 0.7675 | 0.7675 |
61
+ | 0.0077 | 2.0 | 2584 | 0.0074 | 0.6595 | 0.8326 | 0.5460 | 0.4879 | 0.4879 | 0.4879 | 0.8636 | 0.8636 | 0.8636 |
62
+ | 0.007 | 3.0 | 3876 | 0.0071 | 0.6829 | 0.8173 | 0.5864 | 0.5035 | 0.5035 | 0.5035 | 0.8958 | 0.8958 | 0.8958 |
63
+ | 0.0063 | 4.0 | 5168 | 0.0069 | 0.6883 | 0.8317 | 0.5871 | 0.5140 | 0.5140 | 0.5140 | 0.8956 | 0.8956 | 0.8956 |
64
+ | 0.0058 | 5.0 | 6460 | 0.0068 | 0.6957 | 0.8337 | 0.5969 | 0.5182 | 0.5182 | 0.5182 | 0.9058 | 0.9058 | 0.9058 |
65
+ | 0.0053 | 6.0 | 7752 | 0.0069 | 0.6999 | 0.8366 | 0.6017 | 0.5271 | 0.5271 | 0.5271 | 0.9082 | 0.9082 | 0.9082 |
66
+ | 0.0048 | 7.0 | 9044 | 0.0069 | 0.7046 | 0.8159 | 0.6201 | 0.5225 | 0.5225 | 0.5225 | 0.9185 | 0.9185 | 0.9185 |
67
+ | 0.0046 | 8.0 | 10336 | 0.0069 | 0.7069 | 0.8100 | 0.6271 | 0.5241 | 0.5241 | 0.5241 | 0.9196 | 0.9196 | 0.9196 |
68
+ | 0.0042 | 9.0 | 11628 | 0.0070 | 0.7064 | 0.8208 | 0.6200 | 0.5282 | 0.5282 | 0.5282 | 0.9174 | 0.9174 | 0.9174 |
69
+ | 0.004 | 10.0 | 12920 | 0.0070 | 0.7064 | 0.8184 | 0.6214 | 0.5276 | 0.5276 | 0.5276 | 0.9177 | 0.9177 | 0.9177 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.45.2
75
+ - Pytorch 2.0.1+cu117
76
+ - Datasets 3.0.1
77
+ - Tokenizers 0.20.3
config.json ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "FacebookAI/xlm-roberta-large",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "id2label": {
14
+ "0": "Acids and salts, etc",
15
+ "1": "Acids, alkalis, etc",
16
+ "2": "Advertising",
17
+ "3": "Aeronautics",
18
+ "4": "Agricultural appliances, farmyard",
19
+ "5": "Agricultural appliances, for treatment of land, etc.",
20
+ "6": "Air and gas engines",
21
+ "7": "Air and gases, compressing, etc",
22
+ "8": "Ammunition",
23
+ "9": "Animal powered engines",
24
+ "10": "Artists' instruments",
25
+ "11": "Bearings, etc.",
26
+ "12": "Bells, etc",
27
+ "13": "Beverages",
28
+ "14": "Bleaching, etc.",
29
+ "15": "Books",
30
+ "16": "Boots, etc",
31
+ "17": "Boxes, etc",
32
+ "18": "Brushing, etc",
33
+ "19": "Buildings",
34
+ "20": "Casks",
35
+ "21": "Cements",
36
+ "22": "Centrifugal drying",
37
+ "23": "Chains",
38
+ "24": "Chimneys",
39
+ "25": "Closets",
40
+ "26": "Coin-feed apparatus",
41
+ "27": "Cooking, etc",
42
+ "28": "Cooling",
43
+ "29": "Cutlery",
44
+ "30": "Cutting",
45
+ "31": "Distilling",
46
+ "32": "Drains",
47
+ "33": "Drying",
48
+ "34": "Dynamo electric generators",
49
+ "35": "Electric lamps",
50
+ "36": "Electric telegraphs",
51
+ "37": "Electricity conducting",
52
+ "38": "Electricity measuring",
53
+ "39": "Electricity regulating",
54
+ "40": "Electrolysis",
55
+ "41": "Fabrics, dressing",
56
+ "42": "Fastenings, dress",
57
+ "43": "Fastenings, lock",
58
+ "44": "Fencing",
59
+ "45": "Filtering",
60
+ "46": "Fire extinction",
61
+ "47": "Fish",
62
+ "48": "Food",
63
+ "49": "Fuel, manufacture",
64
+ "50": "Furnaces",
65
+ "51": "Furniture",
66
+ "52": "Galvanic batteries",
67
+ "53": "Gas distribution",
68
+ "54": "Gas manufacture",
69
+ "55": "Glass",
70
+ "56": "Governors",
71
+ "57": "Grain",
72
+ "58": "Grinding and crushing",
73
+ "59": "Grinding or abrading",
74
+ "60": "Hand tools",
75
+ "61": "Harness",
76
+ "62": "Hats",
77
+ "63": "Heating",
78
+ "64": "Hinges",
79
+ "65": "Hollow-ware",
80
+ "66": "Horse-shoes",
81
+ "67": "Hydraulic engineering",
82
+ "68": "Hydraulic machinery",
83
+ "69": "India-rubber",
84
+ "70": "Injectors",
85
+ "71": "Iron",
86
+ "72": "Labels",
87
+ "73": "Lace-making",
88
+ "74": "Lamps",
89
+ "75": "Leather",
90
+ "76": "Life-saving",
91
+ "77": "Lifting",
92
+ "78": "Locomotives",
93
+ "79": "Mechanism",
94
+ "80": "Medicine",
95
+ "81": "Metals and alloys",
96
+ "82": "Metals, Cutting, etc",
97
+ "83": "Milking",
98
+ "84": "Mining",
99
+ "85": "Mixing",
100
+ "86": "Moulding",
101
+ "87": "Music",
102
+ "88": "Nails",
103
+ "89": "Non-metallic elements",
104
+ "90": "Oils",
105
+ "91": "Ordnance",
106
+ "92": "Ornamenting",
107
+ "93": "Packing",
108
+ "94": "Paints",
109
+ "95": "Paper",
110
+ "96": "Philosophical instruments",
111
+ "97": "Photography",
112
+ "98": "Pipes",
113
+ "99": "Printing, letterpress",
114
+ "100": "Printing, other",
115
+ "101": "Pumps",
116
+ "102": "Railway etc. vehicles",
117
+ "103": "Railway signals",
118
+ "104": "Railways, etc.",
119
+ "105": "Registering",
120
+ "106": "Road vehicles",
121
+ "107": "Roads",
122
+ "108": "Ropes",
123
+ "109": "Rotary engines",
124
+ "110": "Sewage",
125
+ "111": "Sewing",
126
+ "112": "Ships, Div I",
127
+ "113": "Ships, Div II",
128
+ "114": "Ships, Div III",
129
+ "115": "Shop accessories",
130
+ "116": "Sifting",
131
+ "117": "Signalling",
132
+ "118": "Small arms",
133
+ "119": "Spinning",
134
+ "120": "Starch",
135
+ "121": "Steam engines",
136
+ "122": "Steam generators",
137
+ "123": "Stone",
138
+ "124": "Stoppering",
139
+ "125": "Stoves",
140
+ "126": "Sugar",
141
+ "127": "Table articles",
142
+ "128": "Tea",
143
+ "129": "Tobacco",
144
+ "130": "Toilet",
145
+ "131": "Toys",
146
+ "132": "Trunks",
147
+ "133": "Umbrellas",
148
+ "134": "Valves",
149
+ "135": "Velocipedes",
150
+ "136": "Ventilation",
151
+ "137": "Washing",
152
+ "138": "Watches",
153
+ "139": "Waterproof fabrics",
154
+ "140": "Wearing apparel",
155
+ "141": "Weaving",
156
+ "142": "Weighing apparatus",
157
+ "143": "Wheels",
158
+ "144": "Wood",
159
+ "145": "Writing instruments"
160
+ },
161
+ "initializer_range": 0.02,
162
+ "intermediate_size": 4096,
163
+ "label2id": {
164
+ "Acids and salts, etc": 0,
165
+ "Acids, alkalis, etc": 1,
166
+ "Advertising": 2,
167
+ "Aeronautics": 3,
168
+ "Agricultural appliances, farmyard": 4,
169
+ "Agricultural appliances, for treatment of land, etc.": 5,
170
+ "Air and gas engines": 6,
171
+ "Air and gases, compressing, etc": 7,
172
+ "Ammunition": 8,
173
+ "Animal powered engines": 9,
174
+ "Artists' instruments": 10,
175
+ "Bearings, etc.": 11,
176
+ "Bells, etc": 12,
177
+ "Beverages": 13,
178
+ "Bleaching, etc.": 14,
179
+ "Books": 15,
180
+ "Boots, etc": 16,
181
+ "Boxes, etc": 17,
182
+ "Brushing, etc": 18,
183
+ "Buildings": 19,
184
+ "Casks": 20,
185
+ "Cements": 21,
186
+ "Centrifugal drying": 22,
187
+ "Chains": 23,
188
+ "Chimneys": 24,
189
+ "Closets": 25,
190
+ "Coin-feed apparatus": 26,
191
+ "Cooking, etc": 27,
192
+ "Cooling": 28,
193
+ "Cutlery": 29,
194
+ "Cutting": 30,
195
+ "Distilling": 31,
196
+ "Drains": 32,
197
+ "Drying": 33,
198
+ "Dynamo electric generators": 34,
199
+ "Electric lamps": 35,
200
+ "Electric telegraphs": 36,
201
+ "Electricity conducting": 37,
202
+ "Electricity measuring": 38,
203
+ "Electricity regulating": 39,
204
+ "Electrolysis": 40,
205
+ "Fabrics, dressing": 41,
206
+ "Fastenings, dress": 42,
207
+ "Fastenings, lock": 43,
208
+ "Fencing": 44,
209
+ "Filtering": 45,
210
+ "Fire extinction": 46,
211
+ "Fish": 47,
212
+ "Food": 48,
213
+ "Fuel, manufacture": 49,
214
+ "Furnaces": 50,
215
+ "Furniture": 51,
216
+ "Galvanic batteries": 52,
217
+ "Gas distribution": 53,
218
+ "Gas manufacture": 54,
219
+ "Glass": 55,
220
+ "Governors": 56,
221
+ "Grain": 57,
222
+ "Grinding and crushing": 58,
223
+ "Grinding or abrading": 59,
224
+ "Hand tools": 60,
225
+ "Harness": 61,
226
+ "Hats": 62,
227
+ "Heating": 63,
228
+ "Hinges": 64,
229
+ "Hollow-ware": 65,
230
+ "Horse-shoes": 66,
231
+ "Hydraulic engineering": 67,
232
+ "Hydraulic machinery": 68,
233
+ "India-rubber": 69,
234
+ "Injectors": 70,
235
+ "Iron": 71,
236
+ "Labels": 72,
237
+ "Lace-making": 73,
238
+ "Lamps": 74,
239
+ "Leather": 75,
240
+ "Life-saving": 76,
241
+ "Lifting": 77,
242
+ "Locomotives": 78,
243
+ "Mechanism": 79,
244
+ "Medicine": 80,
245
+ "Metals and alloys": 81,
246
+ "Metals, Cutting, etc": 82,
247
+ "Milking": 83,
248
+ "Mining": 84,
249
+ "Mixing": 85,
250
+ "Moulding": 86,
251
+ "Music": 87,
252
+ "Nails": 88,
253
+ "Non-metallic elements": 89,
254
+ "Oils": 90,
255
+ "Ordnance": 91,
256
+ "Ornamenting": 92,
257
+ "Packing": 93,
258
+ "Paints": 94,
259
+ "Paper": 95,
260
+ "Philosophical instruments": 96,
261
+ "Photography": 97,
262
+ "Pipes": 98,
263
+ "Printing, letterpress": 99,
264
+ "Printing, other": 100,
265
+ "Pumps": 101,
266
+ "Railway etc. vehicles": 102,
267
+ "Railway signals": 103,
268
+ "Railways, etc.": 104,
269
+ "Registering": 105,
270
+ "Road vehicles": 106,
271
+ "Roads": 107,
272
+ "Ropes": 108,
273
+ "Rotary engines": 109,
274
+ "Sewage": 110,
275
+ "Sewing": 111,
276
+ "Ships, Div I": 112,
277
+ "Ships, Div II": 113,
278
+ "Ships, Div III": 114,
279
+ "Shop accessories": 115,
280
+ "Sifting": 116,
281
+ "Signalling": 117,
282
+ "Small arms": 118,
283
+ "Spinning": 119,
284
+ "Starch": 120,
285
+ "Steam engines": 121,
286
+ "Steam generators": 122,
287
+ "Stone": 123,
288
+ "Stoppering": 124,
289
+ "Stoves": 125,
290
+ "Sugar": 126,
291
+ "Table articles": 127,
292
+ "Tea": 128,
293
+ "Tobacco": 129,
294
+ "Toilet": 130,
295
+ "Toys": 131,
296
+ "Trunks": 132,
297
+ "Umbrellas": 133,
298
+ "Valves": 134,
299
+ "Velocipedes": 135,
300
+ "Ventilation": 136,
301
+ "Washing": 137,
302
+ "Watches": 138,
303
+ "Waterproof fabrics": 139,
304
+ "Wearing apparel": 140,
305
+ "Weaving": 141,
306
+ "Weighing apparatus": 142,
307
+ "Wheels": 143,
308
+ "Wood": 144,
309
+ "Writing instruments": 145
310
+ },
311
+ "layer_norm_eps": 1e-05,
312
+ "max_position_embeddings": 514,
313
+ "model_type": "xlm-roberta",
314
+ "num_attention_heads": 16,
315
+ "num_hidden_layers": 24,
316
+ "output_past": true,
317
+ "pad_token_id": 1,
318
+ "position_embedding_type": "absolute",
319
+ "problem_type": "multi_label_classification",
320
+ "torch_dtype": "float32",
321
+ "transformers_version": "4.45.2",
322
+ "type_vocab_size": 1,
323
+ "use_cache": true,
324
+ "vocab_size": 250002
325
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96a56c2c1fad39866ffaab66bc587d3779d78981fb7cdc2398d5ec5698691978
3
+ size 2240209072
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:646efe9826de9de2211c1afbebfe650c28f615b124aeb4c5ed4805cf9014947d
3
+ size 17082999
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "XLMRobertaTokenizer",
53
+ "unk_token": "<unk>"
54
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd5b4cf9450b71c0b853ece3b2e6b27d7a0d1af1e08768f295e0284af523c018
3
+ size 4795