--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: xlm-roberta-large results: [] --- # xlm-roberta-large This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1663 - Accuracy: 0.9515 - Precision: 0.9446 - Recall: 0.9515 - F1: 0.9429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 44 - eval_batch_size: 44 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 137 | 0.1615 | 0.954 | 0.9494 | 0.954 | 0.9463 | | No log | 2.0 | 274 | 0.1538 | 0.9515 | 0.9453 | 0.9515 | 0.9456 | | No log | 3.0 | 411 | 0.1840 | 0.95 | 0.9440 | 0.95 | 0.9454 | | 0.1742 | 4.0 | 548 | 0.2269 | 0.9465 | 0.9435 | 0.9465 | 0.9448 | | 0.1742 | 5.0 | 685 | 0.2550 | 0.949 | 0.9434 | 0.949 | 0.9450 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.0.1+cu117 - Datasets 3.0.1 - Tokenizers 0.21.0