Update README.md
Browse files
README.md
CHANGED
@@ -35,27 +35,27 @@ datasets:
|
|
35 |
## Model description
|
36 |
**masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0** is a **Named Entity Recognition (NER) ** model for 21 African languages. Specifically, this model is a *Davlan/afro-xlmr-large* model that was fine-tuned on an aggregation of African language datasets obtained from two versions of MasakhaNER dataset i.e. [MasakhaNER 1.0](https://huggingface.co/datasets/masakhaner) and [MasakhaNER 2.0](https://huggingface.co/datasets/masakhane/masakhaner2). The languages covered are:
|
37 |
|
38 |
-
Amharic (Amharic)
|
39 |
-
Bambara (bam)
|
40 |
-
Ghomala (bbj)
|
41 |
-
Ewe (ewe)
|
42 |
-
Fon (fon)
|
43 |
-
Hausa (hau)
|
44 |
-
Igbo (ibo)
|
45 |
-
Kinyarwanda (kin)
|
46 |
-
Luganda (lug)
|
47 |
-
Dholuo (luo)
|
48 |
-
Mossi (mos)
|
49 |
-
Chichewa (nya)
|
50 |
-
Nigerian Pidgin
|
51 |
-
chShona (sna)
|
52 |
-
Kiswahili (swą)
|
53 |
-
Setswana (tsn)
|
54 |
-
Twi (twi)
|
55 |
-
Wolof (wol)
|
56 |
-
isiXhosa (xho)
|
57 |
-
Yorùbá (yor)
|
58 |
-
isiZulu (zul)
|
59 |
|
60 |
It has been trained to recognize four types of entities: dates & times (DATE), location (LOC), organization (ORG), and person (PER).
|
61 |
|
|
|
35 |
## Model description
|
36 |
**masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0** is a **Named Entity Recognition (NER) ** model for 21 African languages. Specifically, this model is a *Davlan/afro-xlmr-large* model that was fine-tuned on an aggregation of African language datasets obtained from two versions of MasakhaNER dataset i.e. [MasakhaNER 1.0](https://huggingface.co/datasets/masakhaner) and [MasakhaNER 2.0](https://huggingface.co/datasets/masakhane/masakhaner2). The languages covered are:
|
37 |
|
38 |
+
- Amharic (Amharic)
|
39 |
+
- Bambara (bam)
|
40 |
+
- Ghomala (bbj)
|
41 |
+
- Ewe (ewe)
|
42 |
+
- Fon (fon)
|
43 |
+
- Hausa (hau)
|
44 |
+
- Igbo (ibo)
|
45 |
+
- Kinyarwanda (kin)
|
46 |
+
- Luganda (lug)
|
47 |
+
- Dholuo (luo)
|
48 |
+
-Mossi (mos)
|
49 |
+
- Chichewa (nya)
|
50 |
+
- Nigerian Pidgin
|
51 |
+
- chShona (sna)
|
52 |
+
- Kiswahili (swą)
|
53 |
+
- Setswana (tsn)
|
54 |
+
- Twi (twi)
|
55 |
+
- Wolof (wol)
|
56 |
+
- isiXhosa (xho)
|
57 |
+
- Yorùbá (yor)
|
58 |
+
- isiZulu (zul)
|
59 |
|
60 |
It has been trained to recognize four types of entities: dates & times (DATE), location (LOC), organization (ORG), and person (PER).
|
61 |
|