File size: 18,177 Bytes
2cd560a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..builder import LOSSES
from ..utils.realnvp import RealNVP
@LOSSES.register_module()
class RLELoss(nn.Module):
"""RLE Loss.
`Human Pose Regression With Residual Log-Likelihood Estimation
arXiv: <https://arxiv.org/abs/2107.11291>`_.
Code is modified from `the official implementation
<https://github.com/Jeff-sjtu/res-loglikelihood-regression>`_.
Args:
use_target_weight (bool): Option to use weighted MSE loss.
Different joint types may have different target weights.
size_average (bool): Option to average the loss by the batch_size.
residual (bool): Option to add L1 loss and let the flow
learn the residual error distribution.
q_dis (string): Option for the identity Q(error) distribution,
Options: "laplace" or "gaussian"
"""
def __init__(self,
use_target_weight=False,
size_average=True,
residual=True,
q_dis='laplace'):
super(RLELoss, self).__init__()
self.size_average = size_average
self.use_target_weight = use_target_weight
self.residual = residual
self.q_dis = q_dis
self.flow_model = RealNVP()
def forward(self, output, target, target_weight=None):
"""Forward function.
Note:
- batch_size: N
- num_keypoints: K
- dimension of keypoints: D (D=2 or D=3)
Args:
output (torch.Tensor[N, K, D*2]): Output regression,
including coords and sigmas.
target (torch.Tensor[N, K, D]): Target regression.
target_weight (torch.Tensor[N, K, D]):
Weights across different joint types.
"""
pred = output[:, :, :2]
sigma = output[:, :, 2:4].sigmoid()
error = (pred - target) / (sigma + 1e-9)
# (B, K, 2)
log_phi = self.flow_model.log_prob(error.reshape(-1, 2))
log_phi = log_phi.reshape(target.shape[0], target.shape[1], 1)
log_sigma = torch.log(sigma).reshape(target.shape[0], target.shape[1],
2)
nf_loss = log_sigma - log_phi
if self.residual:
assert self.q_dis in ['laplace', 'gaussian', 'strict']
if self.q_dis == 'laplace':
loss_q = torch.log(sigma * 2) + torch.abs(error)
else:
loss_q = torch.log(
sigma * math.sqrt(2 * math.pi)) + 0.5 * error**2
loss = nf_loss + loss_q
else:
loss = nf_loss
if self.use_target_weight:
assert target_weight is not None
loss *= target_weight
if self.size_average:
loss /= len(loss)
return loss.sum()
@LOSSES.register_module()
class SmoothL1Loss(nn.Module):
"""SmoothL1Loss loss.
Args:
use_target_weight (bool): Option to use weighted MSE loss.
Different joint types may have different target weights.
loss_weight (float): Weight of the loss. Default: 1.0.
"""
def __init__(self, use_target_weight=False, loss_weight=1.):
super().__init__()
self.criterion = F.smooth_l1_loss
self.use_target_weight = use_target_weight
self.loss_weight = loss_weight
def forward(self, output, target, target_weight=None):
"""Forward function.
Note:
- batch_size: N
- num_keypoints: K
- dimension of keypoints: D (D=2 or D=3)
Args:
output (torch.Tensor[N, K, D]): Output regression.
target (torch.Tensor[N, K, D]): Target regression.
target_weight (torch.Tensor[N, K, D]):
Weights across different joint types.
"""
if self.use_target_weight:
assert target_weight is not None
loss = self.criterion(output * target_weight,
target * target_weight)
else:
loss = self.criterion(output, target)
return loss * self.loss_weight
@LOSSES.register_module()
class WingLoss(nn.Module):
"""Wing Loss. paper ref: 'Wing Loss for Robust Facial Landmark Localisation
with Convolutional Neural Networks' Feng et al. CVPR'2018.
Args:
omega (float): Also referred to as width.
epsilon (float): Also referred to as curvature.
use_target_weight (bool): Option to use weighted MSE loss.
Different joint types may have different target weights.
loss_weight (float): Weight of the loss. Default: 1.0.
"""
def __init__(self,
omega=10.0,
epsilon=2.0,
use_target_weight=False,
loss_weight=1.):
super().__init__()
self.omega = omega
self.epsilon = epsilon
self.use_target_weight = use_target_weight
self.loss_weight = loss_weight
# constant that smoothly links the piecewise-defined linear
# and nonlinear parts
self.C = self.omega * (1.0 - math.log(1.0 + self.omega / self.epsilon))
def criterion(self, pred, target):
"""Criterion of wingloss.
Note:
- batch_size: N
- num_keypoints: K
- dimension of keypoints: D (D=2 or D=3)
Args:
pred (torch.Tensor[N, K, D]): Output regression.
target (torch.Tensor[N, K, D]): Target regression.
"""
delta = (target - pred).abs()
losses = torch.where(
delta < self.omega,
self.omega * torch.log(1.0 + delta / self.epsilon), delta - self.C)
return torch.mean(torch.sum(losses, dim=[1, 2]), dim=0)
def forward(self, output, target, target_weight=None):
"""Forward function.
Note:
- batch_size: N
- num_keypoints: K
- dimension of keypoints: D (D=2 or D=3)
Args:
output (torch.Tensor[N, K, D]): Output regression.
target (torch.Tensor[N, K, D]): Target regression.
target_weight (torch.Tensor[N,K,D]):
Weights across different joint types.
"""
if self.use_target_weight:
assert target_weight is not None
loss = self.criterion(output * target_weight,
target * target_weight)
else:
loss = self.criterion(output, target)
return loss * self.loss_weight
@LOSSES.register_module()
class SoftWingLoss(nn.Module):
"""Soft Wing Loss 'Structure-Coherent Deep Feature Learning for Robust Face
Alignment' Lin et al. TIP'2021.
loss =
1. |x| , if |x| < omega1
2. omega2*ln(1+|x|/epsilon) + B, if |x| >= omega1
Args:
omega1 (float): The first threshold.
omega2 (float): The second threshold.
epsilon (float): Also referred to as curvature.
use_target_weight (bool): Option to use weighted MSE loss.
Different joint types may have different target weights.
loss_weight (float): Weight of the loss. Default: 1.0.
"""
def __init__(self,
omega1=2.0,
omega2=20.0,
epsilon=0.5,
use_target_weight=False,
loss_weight=1.):
super().__init__()
self.omega1 = omega1
self.omega2 = omega2
self.epsilon = epsilon
self.use_target_weight = use_target_weight
self.loss_weight = loss_weight
# constant that smoothly links the piecewise-defined linear
# and nonlinear parts
self.B = self.omega1 - self.omega2 * math.log(1.0 + self.omega1 /
self.epsilon)
def criterion(self, pred, target):
"""Criterion of wingloss.
Note:
batch_size: N
num_keypoints: K
dimension of keypoints: D (D=2 or D=3)
Args:
pred (torch.Tensor[N, K, D]): Output regression.
target (torch.Tensor[N, K, D]): Target regression.
"""
delta = (target - pred).abs()
losses = torch.where(
delta < self.omega1, delta,
self.omega2 * torch.log(1.0 + delta / self.epsilon) + self.B)
return torch.mean(torch.sum(losses, dim=[1, 2]), dim=0)
def forward(self, output, target, target_weight=None):
"""Forward function.
Note:
batch_size: N
num_keypoints: K
dimension of keypoints: D (D=2 or D=3)
Args:
output (torch.Tensor[N, K, D]): Output regression.
target (torch.Tensor[N, K, D]): Target regression.
target_weight (torch.Tensor[N, K, D]):
Weights across different joint types.
"""
if self.use_target_weight:
assert target_weight is not None
loss = self.criterion(output * target_weight,
target * target_weight)
else:
loss = self.criterion(output, target)
return loss * self.loss_weight
@LOSSES.register_module()
class MPJPELoss(nn.Module):
"""MPJPE (Mean Per Joint Position Error) loss.
Args:
use_target_weight (bool): Option to use weighted MSE loss.
Different joint types may have different target weights.
loss_weight (float): Weight of the loss. Default: 1.0.
"""
def __init__(self, use_target_weight=False, loss_weight=1.):
super().__init__()
self.use_target_weight = use_target_weight
self.loss_weight = loss_weight
def forward(self, output, target, target_weight=None):
"""Forward function.
Note:
- batch_size: N
- num_keypoints: K
- dimension of keypoints: D (D=2 or D=3)
Args:
output (torch.Tensor[N, K, D]): Output regression.
target (torch.Tensor[N, K, D]): Target regression.
target_weight (torch.Tensor[N,K,D]):
Weights across different joint types.
"""
if self.use_target_weight:
assert target_weight is not None
loss = torch.mean(
torch.norm((output - target) * target_weight, dim=-1))
else:
loss = torch.mean(torch.norm(output - target, dim=-1))
return loss * self.loss_weight
@LOSSES.register_module()
class L1Loss(nn.Module):
"""L1Loss loss ."""
def __init__(self, use_target_weight=False, loss_weight=1.):
super().__init__()
self.criterion = F.l1_loss
self.use_target_weight = use_target_weight
self.loss_weight = loss_weight
def forward(self, output, target, target_weight=None):
"""Forward function.
Note:
- batch_size: N
- num_keypoints: K
Args:
output (torch.Tensor[N, K, 2]): Output regression.
target (torch.Tensor[N, K, 2]): Target regression.
target_weight (torch.Tensor[N, K, 2]):
Weights across different joint types.
"""
if self.use_target_weight:
assert target_weight is not None
loss = self.criterion(output * target_weight,
target * target_weight)
else:
loss = self.criterion(output, target)
return loss * self.loss_weight
@LOSSES.register_module()
class MSELoss(nn.Module):
"""MSE loss for coordinate regression."""
def __init__(self, use_target_weight=False, loss_weight=1.):
super().__init__()
self.criterion = F.mse_loss
self.use_target_weight = use_target_weight
self.loss_weight = loss_weight
def forward(self, output, target, target_weight=None):
"""Forward function.
Note:
- batch_size: N
- num_keypoints: K
Args:
output (torch.Tensor[N, K, 2]): Output regression.
target (torch.Tensor[N, K, 2]): Target regression.
target_weight (torch.Tensor[N, K, 2]):
Weights across different joint types.
"""
if self.use_target_weight:
assert target_weight is not None
loss = self.criterion(output * target_weight,
target * target_weight)
else:
loss = self.criterion(output, target)
return loss * self.loss_weight
@LOSSES.register_module()
class BoneLoss(nn.Module):
"""Bone length loss.
Args:
joint_parents (list): Indices of each joint's parent joint.
use_target_weight (bool): Option to use weighted bone loss.
Different bone types may have different target weights.
loss_weight (float): Weight of the loss. Default: 1.0.
"""
def __init__(self, joint_parents, use_target_weight=False, loss_weight=1.):
super().__init__()
self.joint_parents = joint_parents
self.use_target_weight = use_target_weight
self.loss_weight = loss_weight
self.non_root_indices = []
for i in range(len(self.joint_parents)):
if i != self.joint_parents[i]:
self.non_root_indices.append(i)
def forward(self, output, target, target_weight=None):
"""Forward function.
Note:
- batch_size: N
- num_keypoints: K
- dimension of keypoints: D (D=2 or D=3)
Args:
output (torch.Tensor[N, K, D]): Output regression.
target (torch.Tensor[N, K, D]): Target regression.
target_weight (torch.Tensor[N, K-1]):
Weights across different bone types.
"""
output_bone = torch.norm(
output - output[:, self.joint_parents, :],
dim=-1)[:, self.non_root_indices]
target_bone = torch.norm(
target - target[:, self.joint_parents, :],
dim=-1)[:, self.non_root_indices]
if self.use_target_weight:
assert target_weight is not None
loss = torch.mean(
torch.abs((output_bone * target_weight).mean(dim=0) -
(target_bone * target_weight).mean(dim=0)))
else:
loss = torch.mean(
torch.abs(output_bone.mean(dim=0) - target_bone.mean(dim=0)))
return loss * self.loss_weight
@LOSSES.register_module()
class SemiSupervisionLoss(nn.Module):
"""Semi-supervision loss for unlabeled data. It is composed of projection
loss and bone loss.
Paper ref: `3D human pose estimation in video with temporal convolutions
and semi-supervised training` Dario Pavllo et al. CVPR'2019.
Args:
joint_parents (list): Indices of each joint's parent joint.
projection_loss_weight (float): Weight for projection loss.
bone_loss_weight (float): Weight for bone loss.
warmup_iterations (int): Number of warmup iterations. In the first
`warmup_iterations` iterations, the model is trained only on
labeled data, and semi-supervision loss will be 0.
This is a workaround since currently we cannot access
epoch number in loss functions. Note that the iteration number in
an epoch can be changed due to different GPU numbers in multi-GPU
settings. So please set this parameter carefully.
warmup_iterations = dataset_size // samples_per_gpu // gpu_num
* warmup_epochs
"""
def __init__(self,
joint_parents,
projection_loss_weight=1.,
bone_loss_weight=1.,
warmup_iterations=0):
super().__init__()
self.criterion_projection = MPJPELoss(
loss_weight=projection_loss_weight)
self.criterion_bone = BoneLoss(
joint_parents, loss_weight=bone_loss_weight)
self.warmup_iterations = warmup_iterations
self.num_iterations = 0
@staticmethod
def project_joints(x, intrinsics):
"""Project 3D joint coordinates to 2D image plane using camera
intrinsic parameters.
Args:
x (torch.Tensor[N, K, 3]): 3D joint coordinates.
intrinsics (torch.Tensor[N, 4] | torch.Tensor[N, 9]): Camera
intrinsics: f (2), c (2), k (3), p (2).
"""
while intrinsics.dim() < x.dim():
intrinsics.unsqueeze_(1)
f = intrinsics[..., :2]
c = intrinsics[..., 2:4]
_x = torch.clamp(x[:, :, :2] / x[:, :, 2:], -1, 1)
if intrinsics.shape[-1] == 9:
k = intrinsics[..., 4:7]
p = intrinsics[..., 7:9]
r2 = torch.sum(_x[:, :, :2]**2, dim=-1, keepdim=True)
radial = 1 + torch.sum(
k * torch.cat((r2, r2**2, r2**3), dim=-1),
dim=-1,
keepdim=True)
tan = torch.sum(p * _x, dim=-1, keepdim=True)
_x = _x * (radial + tan) + p * r2
_x = f * _x + c
return _x
def forward(self, output, target):
losses = dict()
self.num_iterations += 1
if self.num_iterations <= self.warmup_iterations:
return losses
labeled_pose = output['labeled_pose']
unlabeled_pose = output['unlabeled_pose']
unlabeled_traj = output['unlabeled_traj']
unlabeled_target_2d = target['unlabeled_target_2d']
intrinsics = target['intrinsics']
# projection loss
unlabeled_output = unlabeled_pose + unlabeled_traj
unlabeled_output_2d = self.project_joints(unlabeled_output, intrinsics)
loss_proj = self.criterion_projection(unlabeled_output_2d,
unlabeled_target_2d, None)
losses['proj_loss'] = loss_proj
# bone loss
loss_bone = self.criterion_bone(unlabeled_pose, labeled_pose, None)
losses['bone_loss'] = loss_bone
return losses
|