File size: 2,552 Bytes
e39072e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: finetuned_minilm
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_minilm
This model is a fine-tuned version of [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6736
- Accuracy: 0.9023
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 12345
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.5371 | 1.0 | 619 | 0.2941 | 0.8782 |
| 0.2763 | 2.0 | 1238 | 0.2590 | 0.8986 |
| 0.1899 | 3.0 | 1857 | 0.3081 | 0.8959 |
| 0.1257 | 4.0 | 2476 | 0.2576 | 0.9177 |
| 0.0929 | 5.0 | 3095 | 0.3949 | 0.9059 |
| 0.0806 | 6.0 | 3714 | 0.3304 | 0.9173 |
| 0.0629 | 7.0 | 4333 | 0.4214 | 0.9073 |
| 0.0474 | 8.0 | 4952 | 0.4625 | 0.9145 |
| 0.0498 | 9.0 | 5571 | 0.4227 | 0.9236 |
| 0.049 | 10.0 | 6190 | 0.5549 | 0.8945 |
| 0.0411 | 11.0 | 6809 | 0.3340 | 0.9341 |
| 0.0272 | 12.0 | 7428 | 0.3317 | 0.9291 |
| 0.0264 | 13.0 | 8047 | 0.4099 | 0.9305 |
| 0.0279 | 14.0 | 8666 | 0.4092 | 0.9268 |
| 0.0242 | 15.0 | 9285 | 0.4418 | 0.9318 |
| 0.0241 | 16.0 | 9904 | 0.4352 | 0.9273 |
| 0.0238 | 17.0 | 10523 | 0.5306 | 0.9259 |
| 0.0216 | 18.0 | 11142 | 0.4267 | 0.9241 |
| 0.0166 | 19.0 | 11761 | 0.5134 | 0.9255 |
| 0.0182 | 20.0 | 12380 | 0.6736 | 0.9023 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|