--- library_name: transformers license: mit base_model: Vira21/Whisper-Base-KhmerV2 tags: - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: whisper-base-khmer-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: fleurs config: km_kh split: test args: km_kh metrics: - name: Wer type: wer value: 0.609560191987462 --- # whisper-base-khmer-v2 This model is a fine-tuned version of [Vira21/Whisper-Base-KhmerV2](https://huggingface.co/Vira21/Whisper-Base-KhmerV2) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.2003 - Wer: 0.6096 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.1065 | 0.3171 | 50 | 0.2027 | 0.6121 | | 0.0973 | 0.6342 | 100 | 0.2014 | 0.6138 | | 0.0933 | 0.9512 | 150 | 0.2003 | 0.6096 | | 0.0816 | 1.2727 | 200 | 0.2020 | 0.6125 | | 0.0767 | 1.5898 | 250 | 0.2025 | 0.6131 | | 0.0782 | 1.9069 | 300 | 0.2027 | 0.6096 | | 0.0728 | 2.2283 | 350 | 0.2044 | 0.6097 | | 0.0692 | 2.5454 | 400 | 0.2043 | 0.6131 | | 0.0685 | 2.8625 | 450 | 0.2043 | 0.6125 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0