manu commited on
Commit
98127b9
·
verified ·
1 Parent(s): 23d9294

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +218 -199
README.md CHANGED
@@ -7,7 +7,7 @@ tags:
7
  - sentence-similarity
8
  - mteb
9
  model-index:
10
- - name: sentence_croissant_proj_v2
11
  results:
12
  - task:
13
  type: Clustering
@@ -31,127 +31,134 @@ model-index:
31
  metrics:
32
  - type: v_measure
33
  value: 36.450870830351036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  - task:
35
  type: Retrieval
36
  dataset:
37
- type: lyon-nlp/alloprof
38
- name: MTEB AlloprofRetrieval
39
  config: default
40
  split: test
41
- revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
42
  metrics:
43
  - type: map_at_1
44
- value: 30.19
45
  - type: map_at_10
46
- value: 41.709
47
  - type: map_at_100
48
- value: 42.693
49
  - type: map_at_1000
50
- value: 42.735
51
  - type: map_at_3
52
- value: 38.651
53
  - type: map_at_5
54
- value: 40.498
55
  - type: mrr_at_1
56
- value: 30.19
57
  - type: mrr_at_10
58
- value: 41.709
59
  - type: mrr_at_100
60
- value: 42.693
61
  - type: mrr_at_1000
62
- value: 42.735
63
  - type: mrr_at_3
64
- value: 38.651
65
  - type: mrr_at_5
66
- value: 40.498
67
  - type: ndcg_at_1
68
- value: 30.19
69
  - type: ndcg_at_10
70
- value: 47.663
71
  - type: ndcg_at_100
72
- value: 52.586999999999996
73
  - type: ndcg_at_1000
74
- value: 53.727000000000004
75
  - type: ndcg_at_3
76
- value: 41.425
77
  - type: ndcg_at_5
78
- value: 44.746
79
  - type: precision_at_1
80
- value: 30.19
81
  - type: precision_at_10
82
- value: 6.648999999999999
83
  - type: precision_at_100
84
- value: 0.898
85
  - type: precision_at_1000
86
- value: 0.099
87
  - type: precision_at_3
88
- value: 16.485
89
  - type: precision_at_5
90
- value: 11.501
91
  - type: recall_at_1
92
- value: 30.19
93
  - type: recall_at_10
94
- value: 66.485
95
  - type: recall_at_100
96
- value: 89.81
97
  - type: recall_at_1000
98
- value: 98.80799999999999
99
  - type: recall_at_3
100
- value: 49.456
101
  - type: recall_at_5
102
- value: 57.504
103
- - task:
104
- type: Classification
105
- dataset:
106
- type: mteb/amazon_reviews_multi
107
- name: MTEB AmazonReviewsClassification (fr)
108
- config: fr
109
- split: test
110
- revision: 1399c76144fd37290681b995c656ef9b2e06e26d
111
- metrics:
112
- - type: accuracy
113
- value: 36.484
114
- - type: f1
115
- value: 36.358267416839176
116
  - task:
117
- type: Retrieval
118
  dataset:
119
- type: maastrichtlawtech/bsard
120
- name: MTEB BSARDRetrieval
121
  config: default
122
  split: test
123
- revision: 77f7e271bf4a92b24fce5119f3486b583ca016ff
124
  metrics:
125
- - type: ndcg_at_10
126
- value: 0
127
  - task:
128
- type: BitextMining
129
  dataset:
130
- type: rbawden/DiaBLa
131
- name: MTEB DiaBLaBitextMining (fr-en)
132
- config: fr-en
133
  split: test
134
- revision: 5345895c56a601afe1a98519ce3199be60a27dba
135
  metrics:
136
- - type: accuracy
137
- value: 78.46207376478776
138
- - type: f1
139
- value: 75.36450933606442
140
- - type: precision
141
- value: 74.2353689312528
142
- - type: recall
143
- value: 78.46207376478776
144
  - task:
145
  type: Clustering
146
  dataset:
147
- type: lyon-nlp/clustering-hal-s2s
148
- name: MTEB HALClusteringS2S
149
  config: default
150
  split: test
151
- revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
152
  metrics:
153
  - type: v_measure
154
- value: 24.970553942854256
155
  - task:
156
  type: Classification
157
  dataset:
@@ -188,9 +195,9 @@ model-index:
188
  revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
189
  metrics:
190
  - type: accuracy
191
- value: 78.43601895734598
192
  - type: f1
193
- value: 74.53597674607394
194
  - task:
195
  type: Clustering
196
  dataset:
@@ -249,65 +256,65 @@ model-index:
249
  revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
250
  metrics:
251
  - type: map_at_1
252
- value: 14.127999999999998
253
  - type: map_at_10
254
- value: 22.33
255
  - type: map_at_100
256
- value: 23.599
257
  - type: map_at_1000
258
- value: 23.69
259
  - type: map_at_3
260
- value: 19.827
261
  - type: map_at_5
262
- value: 21.227
263
  - type: mrr_at_1
264
- value: 14.127999999999998
265
  - type: mrr_at_10
266
- value: 22.33
267
  - type: mrr_at_100
268
- value: 23.599
269
  - type: mrr_at_1000
270
- value: 23.69
271
  - type: mrr_at_3
272
- value: 19.827
273
  - type: mrr_at_5
274
- value: 21.227
275
  - type: ndcg_at_1
276
- value: 14.127999999999998
277
  - type: ndcg_at_10
278
- value: 26.877000000000002
279
  - type: ndcg_at_100
280
- value: 33.6
281
  - type: ndcg_at_1000
282
- value: 36.339
283
  - type: ndcg_at_3
284
- value: 21.686
285
  - type: ndcg_at_5
286
- value: 24.187
287
  - type: precision_at_1
288
- value: 14.127999999999998
289
  - type: precision_at_10
290
- value: 4.144
291
  - type: precision_at_100
292
- value: 0.742
293
  - type: precision_at_1000
294
  value: 0.096
295
  - type: precision_at_3
296
- value: 9.023
297
  - type: precision_at_5
298
- value: 6.618
299
  - type: recall_at_1
300
- value: 14.127999999999998
301
  - type: recall_at_10
302
- value: 41.441
303
  - type: recall_at_100
304
- value: 74.161
305
  - type: recall_at_1000
306
- value: 96.396
307
  - type: recall_at_3
308
- value: 27.067999999999998
309
  - type: recall_at_5
310
- value: 33.088
311
  - task:
312
  type: PairClassification
313
  dataset:
@@ -318,19 +325,19 @@ model-index:
318
  revision: 8a04d940a42cd40658986fdd8e3da561533a3646
319
  metrics:
320
  - type: cos_sim_accuracy
321
- value: 64.64999999999999
322
  - type: cos_sim_ap
323
- value: 66.8133334817777
324
  - type: cos_sim_f1
325
- value: 64.28889879625501
326
  - type: cos_sim_precision
327
- value: 53.80597014925373
328
  - type: cos_sim_recall
329
- value: 79.84496124031007
330
  - type: dot_accuracy
331
- value: 56.10000000000001
332
  - type: dot_ap
333
- value: 49.09379126225788
334
  - type: dot_f1
335
  value: 62.51298026998961
336
  - type: dot_precision
@@ -338,31 +345,31 @@ model-index:
338
  - type: dot_recall
339
  value: 100.0
340
  - type: euclidean_accuracy
341
- value: 64.9
342
  - type: euclidean_ap
343
- value: 67.5354830255498
344
  - type: euclidean_f1
345
- value: 64.25263157894736
346
  - type: euclidean_precision
347
- value: 51.83423913043478
348
  - type: euclidean_recall
349
- value: 84.49612403100775
350
  - type: manhattan_accuracy
351
- value: 64.9
352
  - type: manhattan_ap
353
- value: 67.52879588861276
354
  - type: manhattan_f1
355
- value: 64.30678466076697
356
  - type: manhattan_precision
357
- value: 51.90476190476191
358
  - type: manhattan_recall
359
- value: 84.49612403100775
360
  - type: max_accuracy
361
- value: 64.9
362
  - type: max_ap
363
- value: 67.5354830255498
364
  - type: max_f1
365
- value: 64.30678466076697
366
  - task:
367
  type: STS
368
  dataset:
@@ -373,17 +380,17 @@ model-index:
373
  revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
374
  metrics:
375
  - type: cos_sim_pearson
376
- value: 77.7433096327779
377
  - type: cos_sim_spearman
378
- value: 69.74955653929295
379
  - type: euclidean_pearson
380
- value: 71.96193590817946
381
  - type: euclidean_spearman
382
- value: 68.06075230709968
383
  - type: manhattan_pearson
384
- value: 72.08578378810243
385
  - type: manhattan_spearman
386
- value: 68.13035953053988
387
  - task:
388
  type: STS
389
  dataset:
@@ -394,38 +401,38 @@ model-index:
394
  revision: eea2b4fe26a775864c896887d910b76a8098ad3f
395
  metrics:
396
  - type: cos_sim_pearson
397
- value: 75.81194678023817
398
  - type: cos_sim_spearman
399
- value: 79.56247918360033
400
  - type: euclidean_pearson
401
- value: 70.45327950523198
402
  - type: euclidean_spearman
403
- value: 74.00744870618196
404
  - type: manhattan_pearson
405
- value: 71.12699465268844
406
  - type: manhattan_spearman
407
- value: 74.3574416542159
408
  - task:
409
  type: STS
410
  dataset:
411
- type: stsb_multi_mt
412
  name: MTEB STSBenchmarkMultilingualSTS (fr)
413
  config: fr
414
  split: test
415
  revision: 93d57ef91790589e3ce9c365164337a8a78b7632
416
  metrics:
417
  - type: cos_sim_pearson
418
- value: 77.26709896294982
419
  - type: cos_sim_spearman
420
- value: 75.55738110081339
421
  - type: euclidean_pearson
422
- value: 75.44449879959129
423
  - type: euclidean_spearman
424
- value: 75.12531982165999
425
  - type: manhattan_pearson
426
- value: 75.38816471536302
427
  - type: manhattan_spearman
428
- value: 75.08684496084808
429
  - task:
430
  type: Summarization
431
  dataset:
@@ -436,13 +443,26 @@ model-index:
436
  revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
437
  metrics:
438
  - type: cos_sim_pearson
439
- value: 30.37088408606861
440
  - type: cos_sim_spearman
441
- value: 30.060197502190817
442
  - type: dot_pearson
443
- value: 26.869692417875918
444
  - type: dot_spearman
445
- value: 26.58486640710781
 
 
 
 
 
 
 
 
 
 
 
 
 
446
  - task:
447
  type: Retrieval
448
  dataset:
@@ -450,46 +470,46 @@ model-index:
450
  name: MTEB SyntecRetrieval
451
  config: default
452
  split: test
453
- revision: 77f7e271bf4a92b24fce5119f3486b583ca016ff
454
  metrics:
455
  - type: map_at_1
456
- value: 60.0
457
  - type: map_at_10
458
- value: 73.18
459
  - type: map_at_100
460
- value: 73.436
461
  - type: map_at_1000
462
- value: 73.436
463
  - type: map_at_3
464
- value: 71.0
465
  - type: map_at_5
466
- value: 72.45
467
  - type: mrr_at_1
468
- value: 60.0
469
  - type: mrr_at_10
470
- value: 73.18
471
  - type: mrr_at_100
472
- value: 73.436
473
  - type: mrr_at_1000
474
- value: 73.436
475
  - type: mrr_at_3
476
- value: 71.0
477
  - type: mrr_at_5
478
- value: 72.45
479
  - type: ndcg_at_1
480
- value: 60.0
481
  - type: ndcg_at_10
482
- value: 78.815
483
  - type: ndcg_at_100
484
- value: 79.791
485
  - type: ndcg_at_1000
486
- value: 79.791
487
  - type: ndcg_at_3
488
- value: 74.595
489
  - type: ndcg_at_5
490
- value: 77.13499999999999
491
  - type: precision_at_1
492
- value: 60.0
493
  - type: precision_at_10
494
  value: 9.6
495
  - type: precision_at_100
@@ -497,11 +517,11 @@ model-index:
497
  - type: precision_at_1000
498
  value: 0.1
499
  - type: precision_at_3
500
- value: 28.333000000000002
501
  - type: precision_at_5
502
- value: 18.2
503
  - type: recall_at_1
504
- value: 60.0
505
  - type: recall_at_10
506
  value: 96.0
507
  - type: recall_at_100
@@ -509,9 +529,9 @@ model-index:
509
  - type: recall_at_1000
510
  value: 100.0
511
  - type: recall_at_3
512
- value: 85.0
513
  - type: recall_at_5
514
- value: 91.0
515
  - task:
516
  type: Retrieval
517
  dataset:
@@ -522,66 +542,65 @@ model-index:
522
  revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
523
  metrics:
524
  - type: map_at_1
525
- value: 37.241
526
  - type: map_at_10
527
- value: 56.678
528
  - type: map_at_100
529
- value: 58.238
530
  - type: map_at_1000
531
- value: 58.294999999999995
532
  - type: map_at_3
533
- value: 50.859
534
  - type: map_at_5
535
- value: 54.278999999999996
536
  - type: mrr_at_1
537
- value: 58.745000000000005
538
  - type: mrr_at_10
539
- value: 65.857
540
  - type: mrr_at_100
541
- value: 66.449
542
  - type: mrr_at_1000
543
- value: 66.467
544
  - type: mrr_at_3
545
- value: 63.796
546
  - type: mrr_at_5
547
- value: 65.11099999999999
548
  - type: ndcg_at_1
549
- value: 58.745000000000005
550
  - type: ndcg_at_10
551
- value: 63.132
552
  - type: ndcg_at_100
553
- value: 68.475
554
  - type: ndcg_at_1000
555
- value: 69.42399999999999
556
  - type: ndcg_at_3
557
- value: 57.801
558
  - type: ndcg_at_5
559
- value: 59.282999999999994
560
  - type: precision_at_1
561
- value: 58.745000000000005
562
  - type: precision_at_10
563
- value: 14.78
564
  - type: precision_at_100
565
- value: 1.9290000000000003
566
  - type: precision_at_1000
567
  value: 0.20600000000000002
568
  - type: precision_at_3
569
- value: 34.98
570
  - type: precision_at_5
571
- value: 24.86
572
  - type: recall_at_1
573
- value: 37.241
574
  - type: recall_at_10
575
- value: 72.116
576
  - type: recall_at_100
577
- value: 93.024
578
  - type: recall_at_1000
579
- value: 99.146
580
  - type: recall_at_3
581
- value: 55.35600000000001
582
  - type: recall_at_5
583
- value: 62.735
584
-
585
  ---
586
 
587
  # {MODEL_NAME}
 
7
  - sentence-similarity
8
  - mteb
9
  model-index:
10
+ - name: sentence_croissant_alpha_v0.2
11
  results:
12
  - task:
13
  type: Clustering
 
31
  metrics:
32
  - type: v_measure
33
  value: 36.450870830351036
34
+ - task:
35
+ type: Reranking
36
+ dataset:
37
+ type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
38
+ name: MTEB AlloprofReranking
39
+ config: default
40
+ split: test
41
+ revision: e40c8a63ce02da43200eccb5b0846fcaa888f562
42
+ metrics:
43
+ - type: map
44
+ value: 67.23549444979429
45
+ - type: mrr
46
+ value: 68.49382830276612
47
+ - task:
48
+ type: Classification
49
+ dataset:
50
+ type: mteb/amazon_reviews_multi
51
+ name: MTEB AmazonReviewsClassification (fr)
52
+ config: fr
53
+ split: test
54
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
55
+ metrics:
56
+ - type: accuracy
57
+ value: 36.484
58
+ - type: f1
59
+ value: 36.358267416839176
60
  - task:
61
  type: Retrieval
62
  dataset:
63
+ type: maastrichtlawtech/bsard
64
+ name: MTEB BSARDRetrieval
65
  config: default
66
  split: test
67
+ revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
68
  metrics:
69
  - type: map_at_1
70
+ value: 0.44999999999999996
71
  - type: map_at_10
72
+ value: 1.184
73
  - type: map_at_100
74
+ value: 1.5939999999999999
75
  - type: map_at_1000
76
+ value: 1.6680000000000001
77
  - type: map_at_3
78
+ value: 0.901
79
  - type: map_at_5
80
+ value: 1.014
81
  - type: mrr_at_1
82
+ value: 0.44999999999999996
83
  - type: mrr_at_10
84
+ value: 1.184
85
  - type: mrr_at_100
86
+ value: 1.5939999999999999
87
  - type: mrr_at_1000
88
+ value: 1.6680000000000001
89
  - type: mrr_at_3
90
+ value: 0.901
91
  - type: mrr_at_5
92
+ value: 1.014
93
  - type: ndcg_at_1
94
+ value: 0.44999999999999996
95
  - type: ndcg_at_10
96
+ value: 1.746
97
  - type: ndcg_at_100
98
+ value: 4.271
99
  - type: ndcg_at_1000
100
+ value: 6.662
101
  - type: ndcg_at_3
102
+ value: 1.126
103
  - type: ndcg_at_5
104
+ value: 1.32
105
  - type: precision_at_1
106
+ value: 0.44999999999999996
107
  - type: precision_at_10
108
+ value: 0.36
109
  - type: precision_at_100
110
+ value: 0.167
111
  - type: precision_at_1000
112
+ value: 0.036000000000000004
113
  - type: precision_at_3
114
+ value: 0.601
115
  - type: precision_at_5
116
+ value: 0.44999999999999996
117
  - type: recall_at_1
118
+ value: 0.44999999999999996
119
  - type: recall_at_10
120
+ value: 3.604
121
  - type: recall_at_100
122
+ value: 16.667
123
  - type: recall_at_1000
124
+ value: 36.486000000000004
125
  - type: recall_at_3
126
+ value: 1.802
127
  - type: recall_at_5
128
+ value: 2.252
 
 
 
 
 
 
 
 
 
 
 
 
 
129
  - task:
130
+ type: Clustering
131
  dataset:
132
+ type: lyon-nlp/clustering-hal-s2s
133
+ name: MTEB HALClusteringS2S
134
  config: default
135
  split: test
136
+ revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
137
  metrics:
138
+ - type: v_measure
139
+ value: 24.970553942854256
140
  - task:
141
+ type: Clustering
142
  dataset:
143
+ type: mlsum
144
+ name: MTEB MLSUMClusteringP2P
145
+ config: default
146
  split: test
147
+ revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
148
  metrics:
149
+ - type: v_measure
150
+ value: 42.48794423025542
 
 
 
 
 
 
151
  - task:
152
  type: Clustering
153
  dataset:
154
+ type: mlsum
155
+ name: MTEB MLSUMClusteringS2S
156
  config: default
157
  split: test
158
+ revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
159
  metrics:
160
  - type: v_measure
161
+ value: 34.44830504100088
162
  - task:
163
  type: Classification
164
  dataset:
 
195
  revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
196
  metrics:
197
  - type: accuracy
198
+ value: 73.17535545023696
199
  - type: f1
200
+ value: 69.07397342867827
201
  - task:
202
  type: Clustering
203
  dataset:
 
256
  revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
257
  metrics:
258
  - type: map_at_1
259
+ value: 14.824000000000002
260
  - type: map_at_10
261
+ value: 23.217
262
  - type: map_at_100
263
+ value: 24.484
264
  - type: map_at_1000
265
+ value: 24.571
266
  - type: map_at_3
267
+ value: 20.762
268
  - type: map_at_5
269
+ value: 22.121
270
  - type: mrr_at_1
271
+ value: 14.824000000000002
272
  - type: mrr_at_10
273
+ value: 23.217
274
  - type: mrr_at_100
275
+ value: 24.484
276
  - type: mrr_at_1000
277
+ value: 24.571
278
  - type: mrr_at_3
279
+ value: 20.762
280
  - type: mrr_at_5
281
+ value: 22.121
282
  - type: ndcg_at_1
283
+ value: 14.824000000000002
284
  - type: ndcg_at_10
285
+ value: 27.876
286
  - type: ndcg_at_100
287
+ value: 34.53
288
  - type: ndcg_at_1000
289
+ value: 37.153999999999996
290
  - type: ndcg_at_3
291
+ value: 22.746
292
  - type: ndcg_at_5
293
+ value: 25.192999999999998
294
  - type: precision_at_1
295
+ value: 14.824000000000002
296
  - type: precision_at_10
297
+ value: 4.279
298
  - type: precision_at_100
299
+ value: 0.75
300
  - type: precision_at_1000
301
  value: 0.096
302
  - type: precision_at_3
303
+ value: 9.5
304
  - type: precision_at_5
305
+ value: 6.888
306
  - type: recall_at_1
307
+ value: 14.824000000000002
308
  - type: recall_at_10
309
+ value: 42.793
310
  - type: recall_at_100
311
+ value: 75.02
312
  - type: recall_at_1000
313
+ value: 96.274
314
  - type: recall_at_3
315
+ value: 28.500999999999998
316
  - type: recall_at_5
317
+ value: 34.439
318
  - task:
319
  type: PairClassification
320
  dataset:
 
325
  revision: 8a04d940a42cd40658986fdd8e3da561533a3646
326
  metrics:
327
  - type: cos_sim_accuracy
328
+ value: 64.7
329
  - type: cos_sim_ap
330
+ value: 66.97936856243149
331
  - type: cos_sim_f1
332
+ value: 64.10698878343399
333
  - type: cos_sim_precision
334
+ value: 52.50883392226149
335
  - type: cos_sim_recall
336
+ value: 82.281284606866
337
  - type: dot_accuracy
338
+ value: 55.7
339
  - type: dot_ap
340
+ value: 49.248259184437195
341
  - type: dot_f1
342
  value: 62.51298026998961
343
  - type: dot_precision
 
345
  - type: dot_recall
346
  value: 100.0
347
  - type: euclidean_accuracy
348
+ value: 65.14999999999999
349
  - type: euclidean_ap
350
+ value: 67.67376405881289
351
  - type: euclidean_f1
352
+ value: 64.10034602076125
353
  - type: euclidean_precision
354
+ value: 52.59048970901349
355
  - type: euclidean_recall
356
+ value: 82.05980066445183
357
  - type: manhattan_accuracy
358
+ value: 65.2
359
  - type: manhattan_ap
360
+ value: 67.68415171194316
361
  - type: manhattan_f1
362
+ value: 64.16899163013153
363
  - type: manhattan_precision
364
+ value: 50.12453300124533
365
  - type: manhattan_recall
366
+ value: 89.14728682170544
367
  - type: max_accuracy
368
+ value: 65.2
369
  - type: max_ap
370
+ value: 67.68415171194316
371
  - type: max_f1
372
+ value: 64.16899163013153
373
  - task:
374
  type: STS
375
  dataset:
 
380
  revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
381
  metrics:
382
  - type: cos_sim_pearson
383
+ value: 77.68761269197373
384
  - type: cos_sim_spearman
385
+ value: 69.66744624141576
386
  - type: euclidean_pearson
387
+ value: 72.05200050489465
388
  - type: euclidean_spearman
389
+ value: 68.04895470259305
390
  - type: manhattan_pearson
391
+ value: 72.16693522711834
392
  - type: manhattan_spearman
393
+ value: 68.12086601967899
394
  - task:
395
  type: STS
396
  dataset:
 
401
  revision: eea2b4fe26a775864c896887d910b76a8098ad3f
402
  metrics:
403
  - type: cos_sim_pearson
404
+ value: 75.11874053715779
405
  - type: cos_sim_spearman
406
+ value: 78.68085137779333
407
  - type: euclidean_pearson
408
+ value: 68.83921367763453
409
  - type: euclidean_spearman
410
+ value: 71.35148956255736
411
  - type: manhattan_pearson
412
+ value: 69.46950072200525
413
  - type: manhattan_spearman
414
+ value: 71.66493261411941
415
  - task:
416
  type: STS
417
  dataset:
418
+ type: PhilipMay/stsb_multi_mt
419
  name: MTEB STSBenchmarkMultilingualSTS (fr)
420
  config: fr
421
  split: test
422
  revision: 93d57ef91790589e3ce9c365164337a8a78b7632
423
  metrics:
424
  - type: cos_sim_pearson
425
+ value: 78.09242108846412
426
  - type: cos_sim_spearman
427
+ value: 76.38442769094321
428
  - type: euclidean_pearson
429
+ value: 76.19649405196662
430
  - type: euclidean_spearman
431
+ value: 75.95441973818816
432
  - type: manhattan_pearson
433
+ value: 76.13548797312832
434
  - type: manhattan_spearman
435
+ value: 75.93264073187262
436
  - task:
437
  type: Summarization
438
  dataset:
 
443
  revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
444
  metrics:
445
  - type: cos_sim_pearson
446
+ value: 30.511451950181858
447
  - type: cos_sim_spearman
448
+ value: 30.267871792007288
449
  - type: dot_pearson
450
+ value: 27.428950856263114
451
  - type: dot_spearman
452
+ value: 26.895658072972395
453
+ - task:
454
+ type: Reranking
455
+ dataset:
456
+ type: lyon-nlp/mteb-fr-reranking-syntec-s2p
457
+ name: MTEB SyntecReranking
458
+ config: default
459
+ split: test
460
+ revision: b205c5084a0934ce8af14338bf03feb19499c84d
461
+ metrics:
462
+ - type: map
463
+ value: 83.16666666666667
464
+ - type: mrr
465
+ value: 83.16666666666667
466
  - task:
467
  type: Retrieval
468
  dataset:
 
470
  name: MTEB SyntecRetrieval
471
  config: default
472
  split: test
473
+ revision: aa460cd4d177e6a3c04fcd2affd95e8243289033
474
  metrics:
475
  - type: map_at_1
476
+ value: 61.0
477
  - type: map_at_10
478
+ value: 71.863
479
  - type: map_at_100
480
+ value: 72.115
481
  - type: map_at_1000
482
+ value: 72.115
483
  - type: map_at_3
484
+ value: 69.0
485
  - type: map_at_5
486
+ value: 70.95
487
  - type: mrr_at_1
488
+ value: 61.0
489
  - type: mrr_at_10
490
+ value: 71.863
491
  - type: mrr_at_100
492
+ value: 72.115
493
  - type: mrr_at_1000
494
+ value: 72.115
495
  - type: mrr_at_3
496
+ value: 69.0
497
  - type: mrr_at_5
498
+ value: 70.95
499
  - type: ndcg_at_1
500
+ value: 61.0
501
  - type: ndcg_at_10
502
+ value: 77.666
503
  - type: ndcg_at_100
504
+ value: 78.63900000000001
505
  - type: ndcg_at_1000
506
+ value: 78.63900000000001
507
  - type: ndcg_at_3
508
+ value: 71.809
509
  - type: ndcg_at_5
510
+ value: 75.422
511
  - type: precision_at_1
512
+ value: 61.0
513
  - type: precision_at_10
514
  value: 9.6
515
  - type: precision_at_100
 
517
  - type: precision_at_1000
518
  value: 0.1
519
  - type: precision_at_3
520
+ value: 26.667
521
  - type: precision_at_5
522
+ value: 17.8
523
  - type: recall_at_1
524
+ value: 61.0
525
  - type: recall_at_10
526
  value: 96.0
527
  - type: recall_at_100
 
529
  - type: recall_at_1000
530
  value: 100.0
531
  - type: recall_at_3
532
+ value: 80.0
533
  - type: recall_at_5
534
+ value: 89.0
535
  - task:
536
  type: Retrieval
537
  dataset:
 
542
  revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
543
  metrics:
544
  - type: map_at_1
545
+ value: 37.736999999999995
546
  - type: map_at_10
547
+ value: 57.842000000000006
548
  - type: map_at_100
549
+ value: 59.373
550
  - type: map_at_1000
551
+ value: 59.426
552
  - type: map_at_3
553
+ value: 51.598
554
  - type: map_at_5
555
+ value: 55.279999999999994
556
  - type: mrr_at_1
557
+ value: 59.68
558
  - type: mrr_at_10
559
+ value: 66.71000000000001
560
  - type: mrr_at_100
561
+ value: 67.28699999999999
562
  - type: mrr_at_1000
563
+ value: 67.301
564
  - type: mrr_at_3
565
+ value: 64.486
566
  - type: mrr_at_5
567
+ value: 65.888
568
  - type: ndcg_at_1
569
+ value: 59.68
570
  - type: ndcg_at_10
571
+ value: 64.27199999999999
572
  - type: ndcg_at_100
573
+ value: 69.429
574
  - type: ndcg_at_1000
575
+ value: 70.314
576
  - type: ndcg_at_3
577
+ value: 58.569
578
  - type: ndcg_at_5
579
+ value: 60.272999999999996
580
  - type: precision_at_1
581
+ value: 59.68
582
  - type: precision_at_10
583
+ value: 15.113
584
  - type: precision_at_100
585
+ value: 1.941
586
  - type: precision_at_1000
587
  value: 0.20600000000000002
588
  - type: precision_at_3
589
+ value: 35.514
590
  - type: precision_at_5
591
+ value: 25.367
592
  - type: recall_at_1
593
+ value: 37.736999999999995
594
  - type: recall_at_10
595
+ value: 73.458
596
  - type: recall_at_100
597
+ value: 93.554
598
  - type: recall_at_1000
599
+ value: 99.346
600
  - type: recall_at_3
601
+ value: 55.774
602
  - type: recall_at_5
603
+ value: 63.836000000000006
 
604
  ---
605
 
606
  # {MODEL_NAME}