Update README.md
Browse files
README.md
CHANGED
@@ -7,7 +7,7 @@ tags:
|
|
7 |
- sentence-similarity
|
8 |
- mteb
|
9 |
model-index:
|
10 |
-
- name:
|
11 |
results:
|
12 |
- task:
|
13 |
type: Clustering
|
@@ -31,127 +31,134 @@ model-index:
|
|
31 |
metrics:
|
32 |
- type: v_measure
|
33 |
value: 36.450870830351036
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
- task:
|
35 |
type: Retrieval
|
36 |
dataset:
|
37 |
-
type:
|
38 |
-
name: MTEB
|
39 |
config: default
|
40 |
split: test
|
41 |
-
revision:
|
42 |
metrics:
|
43 |
- type: map_at_1
|
44 |
-
value:
|
45 |
- type: map_at_10
|
46 |
-
value:
|
47 |
- type: map_at_100
|
48 |
-
value:
|
49 |
- type: map_at_1000
|
50 |
-
value:
|
51 |
- type: map_at_3
|
52 |
-
value:
|
53 |
- type: map_at_5
|
54 |
-
value:
|
55 |
- type: mrr_at_1
|
56 |
-
value:
|
57 |
- type: mrr_at_10
|
58 |
-
value:
|
59 |
- type: mrr_at_100
|
60 |
-
value:
|
61 |
- type: mrr_at_1000
|
62 |
-
value:
|
63 |
- type: mrr_at_3
|
64 |
-
value:
|
65 |
- type: mrr_at_5
|
66 |
-
value:
|
67 |
- type: ndcg_at_1
|
68 |
-
value:
|
69 |
- type: ndcg_at_10
|
70 |
-
value:
|
71 |
- type: ndcg_at_100
|
72 |
-
value:
|
73 |
- type: ndcg_at_1000
|
74 |
-
value:
|
75 |
- type: ndcg_at_3
|
76 |
-
value:
|
77 |
- type: ndcg_at_5
|
78 |
-
value:
|
79 |
- type: precision_at_1
|
80 |
-
value:
|
81 |
- type: precision_at_10
|
82 |
-
value:
|
83 |
- type: precision_at_100
|
84 |
-
value: 0.
|
85 |
- type: precision_at_1000
|
86 |
-
value: 0.
|
87 |
- type: precision_at_3
|
88 |
-
value:
|
89 |
- type: precision_at_5
|
90 |
-
value:
|
91 |
- type: recall_at_1
|
92 |
-
value:
|
93 |
- type: recall_at_10
|
94 |
-
value:
|
95 |
- type: recall_at_100
|
96 |
-
value:
|
97 |
- type: recall_at_1000
|
98 |
-
value:
|
99 |
- type: recall_at_3
|
100 |
-
value:
|
101 |
- type: recall_at_5
|
102 |
-
value:
|
103 |
-
- task:
|
104 |
-
type: Classification
|
105 |
-
dataset:
|
106 |
-
type: mteb/amazon_reviews_multi
|
107 |
-
name: MTEB AmazonReviewsClassification (fr)
|
108 |
-
config: fr
|
109 |
-
split: test
|
110 |
-
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
111 |
-
metrics:
|
112 |
-
- type: accuracy
|
113 |
-
value: 36.484
|
114 |
-
- type: f1
|
115 |
-
value: 36.358267416839176
|
116 |
- task:
|
117 |
-
type:
|
118 |
dataset:
|
119 |
-
type:
|
120 |
-
name: MTEB
|
121 |
config: default
|
122 |
split: test
|
123 |
-
revision:
|
124 |
metrics:
|
125 |
-
- type:
|
126 |
-
value:
|
127 |
- task:
|
128 |
-
type:
|
129 |
dataset:
|
130 |
-
type:
|
131 |
-
name: MTEB
|
132 |
-
config:
|
133 |
split: test
|
134 |
-
revision:
|
135 |
metrics:
|
136 |
-
- type:
|
137 |
-
value:
|
138 |
-
- type: f1
|
139 |
-
value: 75.36450933606442
|
140 |
-
- type: precision
|
141 |
-
value: 74.2353689312528
|
142 |
-
- type: recall
|
143 |
-
value: 78.46207376478776
|
144 |
- task:
|
145 |
type: Clustering
|
146 |
dataset:
|
147 |
-
type:
|
148 |
-
name: MTEB
|
149 |
config: default
|
150 |
split: test
|
151 |
-
revision:
|
152 |
metrics:
|
153 |
- type: v_measure
|
154 |
-
value:
|
155 |
- task:
|
156 |
type: Classification
|
157 |
dataset:
|
@@ -188,9 +195,9 @@ model-index:
|
|
188 |
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
|
189 |
metrics:
|
190 |
- type: accuracy
|
191 |
-
value:
|
192 |
- type: f1
|
193 |
-
value:
|
194 |
- task:
|
195 |
type: Clustering
|
196 |
dataset:
|
@@ -249,65 +256,65 @@ model-index:
|
|
249 |
revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
|
250 |
metrics:
|
251 |
- type: map_at_1
|
252 |
-
value: 14.
|
253 |
- type: map_at_10
|
254 |
-
value:
|
255 |
- type: map_at_100
|
256 |
-
value:
|
257 |
- type: map_at_1000
|
258 |
-
value:
|
259 |
- type: map_at_3
|
260 |
-
value:
|
261 |
- type: map_at_5
|
262 |
-
value:
|
263 |
- type: mrr_at_1
|
264 |
-
value: 14.
|
265 |
- type: mrr_at_10
|
266 |
-
value:
|
267 |
- type: mrr_at_100
|
268 |
-
value:
|
269 |
- type: mrr_at_1000
|
270 |
-
value:
|
271 |
- type: mrr_at_3
|
272 |
-
value:
|
273 |
- type: mrr_at_5
|
274 |
-
value:
|
275 |
- type: ndcg_at_1
|
276 |
-
value: 14.
|
277 |
- type: ndcg_at_10
|
278 |
-
value:
|
279 |
- type: ndcg_at_100
|
280 |
-
value:
|
281 |
- type: ndcg_at_1000
|
282 |
-
value:
|
283 |
- type: ndcg_at_3
|
284 |
-
value:
|
285 |
- type: ndcg_at_5
|
286 |
-
value:
|
287 |
- type: precision_at_1
|
288 |
-
value: 14.
|
289 |
- type: precision_at_10
|
290 |
-
value: 4.
|
291 |
- type: precision_at_100
|
292 |
-
value: 0.
|
293 |
- type: precision_at_1000
|
294 |
value: 0.096
|
295 |
- type: precision_at_3
|
296 |
-
value: 9.
|
297 |
- type: precision_at_5
|
298 |
-
value: 6.
|
299 |
- type: recall_at_1
|
300 |
-
value: 14.
|
301 |
- type: recall_at_10
|
302 |
-
value:
|
303 |
- type: recall_at_100
|
304 |
-
value:
|
305 |
- type: recall_at_1000
|
306 |
-
value: 96.
|
307 |
- type: recall_at_3
|
308 |
-
value:
|
309 |
- type: recall_at_5
|
310 |
-
value:
|
311 |
- task:
|
312 |
type: PairClassification
|
313 |
dataset:
|
@@ -318,19 +325,19 @@ model-index:
|
|
318 |
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
|
319 |
metrics:
|
320 |
- type: cos_sim_accuracy
|
321 |
-
value: 64.
|
322 |
- type: cos_sim_ap
|
323 |
-
value: 66.
|
324 |
- type: cos_sim_f1
|
325 |
-
value: 64.
|
326 |
- type: cos_sim_precision
|
327 |
-
value:
|
328 |
- type: cos_sim_recall
|
329 |
-
value:
|
330 |
- type: dot_accuracy
|
331 |
-
value:
|
332 |
- type: dot_ap
|
333 |
-
value: 49.
|
334 |
- type: dot_f1
|
335 |
value: 62.51298026998961
|
336 |
- type: dot_precision
|
@@ -338,31 +345,31 @@ model-index:
|
|
338 |
- type: dot_recall
|
339 |
value: 100.0
|
340 |
- type: euclidean_accuracy
|
341 |
-
value:
|
342 |
- type: euclidean_ap
|
343 |
-
value: 67.
|
344 |
- type: euclidean_f1
|
345 |
-
value: 64.
|
346 |
- type: euclidean_precision
|
347 |
-
value:
|
348 |
- type: euclidean_recall
|
349 |
-
value:
|
350 |
- type: manhattan_accuracy
|
351 |
-
value:
|
352 |
- type: manhattan_ap
|
353 |
-
value: 67.
|
354 |
- type: manhattan_f1
|
355 |
-
value: 64.
|
356 |
- type: manhattan_precision
|
357 |
-
value:
|
358 |
- type: manhattan_recall
|
359 |
-
value:
|
360 |
- type: max_accuracy
|
361 |
-
value:
|
362 |
- type: max_ap
|
363 |
-
value: 67.
|
364 |
- type: max_f1
|
365 |
-
value: 64.
|
366 |
- task:
|
367 |
type: STS
|
368 |
dataset:
|
@@ -373,17 +380,17 @@ model-index:
|
|
373 |
revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
|
374 |
metrics:
|
375 |
- type: cos_sim_pearson
|
376 |
-
value: 77.
|
377 |
- type: cos_sim_spearman
|
378 |
-
value: 69.
|
379 |
- type: euclidean_pearson
|
380 |
-
value:
|
381 |
- type: euclidean_spearman
|
382 |
-
value: 68.
|
383 |
- type: manhattan_pearson
|
384 |
-
value: 72.
|
385 |
- type: manhattan_spearman
|
386 |
-
value: 68.
|
387 |
- task:
|
388 |
type: STS
|
389 |
dataset:
|
@@ -394,38 +401,38 @@ model-index:
|
|
394 |
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
395 |
metrics:
|
396 |
- type: cos_sim_pearson
|
397 |
-
value: 75.
|
398 |
- type: cos_sim_spearman
|
399 |
-
value:
|
400 |
- type: euclidean_pearson
|
401 |
-
value:
|
402 |
- type: euclidean_spearman
|
403 |
-
value:
|
404 |
- type: manhattan_pearson
|
405 |
-
value:
|
406 |
- type: manhattan_spearman
|
407 |
-
value:
|
408 |
- task:
|
409 |
type: STS
|
410 |
dataset:
|
411 |
-
type: stsb_multi_mt
|
412 |
name: MTEB STSBenchmarkMultilingualSTS (fr)
|
413 |
config: fr
|
414 |
split: test
|
415 |
revision: 93d57ef91790589e3ce9c365164337a8a78b7632
|
416 |
metrics:
|
417 |
- type: cos_sim_pearson
|
418 |
-
value:
|
419 |
- type: cos_sim_spearman
|
420 |
-
value:
|
421 |
- type: euclidean_pearson
|
422 |
-
value:
|
423 |
- type: euclidean_spearman
|
424 |
-
value: 75.
|
425 |
- type: manhattan_pearson
|
426 |
-
value:
|
427 |
- type: manhattan_spearman
|
428 |
-
value: 75.
|
429 |
- task:
|
430 |
type: Summarization
|
431 |
dataset:
|
@@ -436,13 +443,26 @@ model-index:
|
|
436 |
revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
|
437 |
metrics:
|
438 |
- type: cos_sim_pearson
|
439 |
-
value: 30.
|
440 |
- type: cos_sim_spearman
|
441 |
-
value: 30.
|
442 |
- type: dot_pearson
|
443 |
-
value:
|
444 |
- type: dot_spearman
|
445 |
-
value: 26.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
446 |
- task:
|
447 |
type: Retrieval
|
448 |
dataset:
|
@@ -450,46 +470,46 @@ model-index:
|
|
450 |
name: MTEB SyntecRetrieval
|
451 |
config: default
|
452 |
split: test
|
453 |
-
revision:
|
454 |
metrics:
|
455 |
- type: map_at_1
|
456 |
-
value:
|
457 |
- type: map_at_10
|
458 |
-
value:
|
459 |
- type: map_at_100
|
460 |
-
value:
|
461 |
- type: map_at_1000
|
462 |
-
value:
|
463 |
- type: map_at_3
|
464 |
-
value:
|
465 |
- type: map_at_5
|
466 |
-
value:
|
467 |
- type: mrr_at_1
|
468 |
-
value:
|
469 |
- type: mrr_at_10
|
470 |
-
value:
|
471 |
- type: mrr_at_100
|
472 |
-
value:
|
473 |
- type: mrr_at_1000
|
474 |
-
value:
|
475 |
- type: mrr_at_3
|
476 |
-
value:
|
477 |
- type: mrr_at_5
|
478 |
-
value:
|
479 |
- type: ndcg_at_1
|
480 |
-
value:
|
481 |
- type: ndcg_at_10
|
482 |
-
value:
|
483 |
- type: ndcg_at_100
|
484 |
-
value:
|
485 |
- type: ndcg_at_1000
|
486 |
-
value:
|
487 |
- type: ndcg_at_3
|
488 |
-
value:
|
489 |
- type: ndcg_at_5
|
490 |
-
value:
|
491 |
- type: precision_at_1
|
492 |
-
value:
|
493 |
- type: precision_at_10
|
494 |
value: 9.6
|
495 |
- type: precision_at_100
|
@@ -497,11 +517,11 @@ model-index:
|
|
497 |
- type: precision_at_1000
|
498 |
value: 0.1
|
499 |
- type: precision_at_3
|
500 |
-
value:
|
501 |
- type: precision_at_5
|
502 |
-
value:
|
503 |
- type: recall_at_1
|
504 |
-
value:
|
505 |
- type: recall_at_10
|
506 |
value: 96.0
|
507 |
- type: recall_at_100
|
@@ -509,9 +529,9 @@ model-index:
|
|
509 |
- type: recall_at_1000
|
510 |
value: 100.0
|
511 |
- type: recall_at_3
|
512 |
-
value:
|
513 |
- type: recall_at_5
|
514 |
-
value:
|
515 |
- task:
|
516 |
type: Retrieval
|
517 |
dataset:
|
@@ -522,66 +542,65 @@ model-index:
|
|
522 |
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
|
523 |
metrics:
|
524 |
- type: map_at_1
|
525 |
-
value: 37.
|
526 |
- type: map_at_10
|
527 |
-
value:
|
528 |
- type: map_at_100
|
529 |
-
value:
|
530 |
- type: map_at_1000
|
531 |
-
value:
|
532 |
- type: map_at_3
|
533 |
-
value:
|
534 |
- type: map_at_5
|
535 |
-
value:
|
536 |
- type: mrr_at_1
|
537 |
-
value:
|
538 |
- type: mrr_at_10
|
539 |
-
value:
|
540 |
- type: mrr_at_100
|
541 |
-
value:
|
542 |
- type: mrr_at_1000
|
543 |
-
value:
|
544 |
- type: mrr_at_3
|
545 |
-
value:
|
546 |
- type: mrr_at_5
|
547 |
-
value: 65.
|
548 |
- type: ndcg_at_1
|
549 |
-
value:
|
550 |
- type: ndcg_at_10
|
551 |
-
value:
|
552 |
- type: ndcg_at_100
|
553 |
-
value:
|
554 |
- type: ndcg_at_1000
|
555 |
-
value:
|
556 |
- type: ndcg_at_3
|
557 |
-
value:
|
558 |
- type: ndcg_at_5
|
559 |
-
value:
|
560 |
- type: precision_at_1
|
561 |
-
value:
|
562 |
- type: precision_at_10
|
563 |
-
value:
|
564 |
- type: precision_at_100
|
565 |
-
value: 1.
|
566 |
- type: precision_at_1000
|
567 |
value: 0.20600000000000002
|
568 |
- type: precision_at_3
|
569 |
-
value:
|
570 |
- type: precision_at_5
|
571 |
-
value:
|
572 |
- type: recall_at_1
|
573 |
-
value: 37.
|
574 |
- type: recall_at_10
|
575 |
-
value:
|
576 |
- type: recall_at_100
|
577 |
-
value: 93.
|
578 |
- type: recall_at_1000
|
579 |
-
value: 99.
|
580 |
- type: recall_at_3
|
581 |
-
value: 55.
|
582 |
- type: recall_at_5
|
583 |
-
value:
|
584 |
-
|
585 |
---
|
586 |
|
587 |
# {MODEL_NAME}
|
|
|
7 |
- sentence-similarity
|
8 |
- mteb
|
9 |
model-index:
|
10 |
+
- name: sentence_croissant_alpha_v0.2
|
11 |
results:
|
12 |
- task:
|
13 |
type: Clustering
|
|
|
31 |
metrics:
|
32 |
- type: v_measure
|
33 |
value: 36.450870830351036
|
34 |
+
- task:
|
35 |
+
type: Reranking
|
36 |
+
dataset:
|
37 |
+
type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
|
38 |
+
name: MTEB AlloprofReranking
|
39 |
+
config: default
|
40 |
+
split: test
|
41 |
+
revision: e40c8a63ce02da43200eccb5b0846fcaa888f562
|
42 |
+
metrics:
|
43 |
+
- type: map
|
44 |
+
value: 67.23549444979429
|
45 |
+
- type: mrr
|
46 |
+
value: 68.49382830276612
|
47 |
+
- task:
|
48 |
+
type: Classification
|
49 |
+
dataset:
|
50 |
+
type: mteb/amazon_reviews_multi
|
51 |
+
name: MTEB AmazonReviewsClassification (fr)
|
52 |
+
config: fr
|
53 |
+
split: test
|
54 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
55 |
+
metrics:
|
56 |
+
- type: accuracy
|
57 |
+
value: 36.484
|
58 |
+
- type: f1
|
59 |
+
value: 36.358267416839176
|
60 |
- task:
|
61 |
type: Retrieval
|
62 |
dataset:
|
63 |
+
type: maastrichtlawtech/bsard
|
64 |
+
name: MTEB BSARDRetrieval
|
65 |
config: default
|
66 |
split: test
|
67 |
+
revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
|
68 |
metrics:
|
69 |
- type: map_at_1
|
70 |
+
value: 0.44999999999999996
|
71 |
- type: map_at_10
|
72 |
+
value: 1.184
|
73 |
- type: map_at_100
|
74 |
+
value: 1.5939999999999999
|
75 |
- type: map_at_1000
|
76 |
+
value: 1.6680000000000001
|
77 |
- type: map_at_3
|
78 |
+
value: 0.901
|
79 |
- type: map_at_5
|
80 |
+
value: 1.014
|
81 |
- type: mrr_at_1
|
82 |
+
value: 0.44999999999999996
|
83 |
- type: mrr_at_10
|
84 |
+
value: 1.184
|
85 |
- type: mrr_at_100
|
86 |
+
value: 1.5939999999999999
|
87 |
- type: mrr_at_1000
|
88 |
+
value: 1.6680000000000001
|
89 |
- type: mrr_at_3
|
90 |
+
value: 0.901
|
91 |
- type: mrr_at_5
|
92 |
+
value: 1.014
|
93 |
- type: ndcg_at_1
|
94 |
+
value: 0.44999999999999996
|
95 |
- type: ndcg_at_10
|
96 |
+
value: 1.746
|
97 |
- type: ndcg_at_100
|
98 |
+
value: 4.271
|
99 |
- type: ndcg_at_1000
|
100 |
+
value: 6.662
|
101 |
- type: ndcg_at_3
|
102 |
+
value: 1.126
|
103 |
- type: ndcg_at_5
|
104 |
+
value: 1.32
|
105 |
- type: precision_at_1
|
106 |
+
value: 0.44999999999999996
|
107 |
- type: precision_at_10
|
108 |
+
value: 0.36
|
109 |
- type: precision_at_100
|
110 |
+
value: 0.167
|
111 |
- type: precision_at_1000
|
112 |
+
value: 0.036000000000000004
|
113 |
- type: precision_at_3
|
114 |
+
value: 0.601
|
115 |
- type: precision_at_5
|
116 |
+
value: 0.44999999999999996
|
117 |
- type: recall_at_1
|
118 |
+
value: 0.44999999999999996
|
119 |
- type: recall_at_10
|
120 |
+
value: 3.604
|
121 |
- type: recall_at_100
|
122 |
+
value: 16.667
|
123 |
- type: recall_at_1000
|
124 |
+
value: 36.486000000000004
|
125 |
- type: recall_at_3
|
126 |
+
value: 1.802
|
127 |
- type: recall_at_5
|
128 |
+
value: 2.252
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
- task:
|
130 |
+
type: Clustering
|
131 |
dataset:
|
132 |
+
type: lyon-nlp/clustering-hal-s2s
|
133 |
+
name: MTEB HALClusteringS2S
|
134 |
config: default
|
135 |
split: test
|
136 |
+
revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
|
137 |
metrics:
|
138 |
+
- type: v_measure
|
139 |
+
value: 24.970553942854256
|
140 |
- task:
|
141 |
+
type: Clustering
|
142 |
dataset:
|
143 |
+
type: mlsum
|
144 |
+
name: MTEB MLSUMClusteringP2P
|
145 |
+
config: default
|
146 |
split: test
|
147 |
+
revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
|
148 |
metrics:
|
149 |
+
- type: v_measure
|
150 |
+
value: 42.48794423025542
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
- task:
|
152 |
type: Clustering
|
153 |
dataset:
|
154 |
+
type: mlsum
|
155 |
+
name: MTEB MLSUMClusteringS2S
|
156 |
config: default
|
157 |
split: test
|
158 |
+
revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
|
159 |
metrics:
|
160 |
- type: v_measure
|
161 |
+
value: 34.44830504100088
|
162 |
- task:
|
163 |
type: Classification
|
164 |
dataset:
|
|
|
195 |
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
|
196 |
metrics:
|
197 |
- type: accuracy
|
198 |
+
value: 73.17535545023696
|
199 |
- type: f1
|
200 |
+
value: 69.07397342867827
|
201 |
- task:
|
202 |
type: Clustering
|
203 |
dataset:
|
|
|
256 |
revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
|
257 |
metrics:
|
258 |
- type: map_at_1
|
259 |
+
value: 14.824000000000002
|
260 |
- type: map_at_10
|
261 |
+
value: 23.217
|
262 |
- type: map_at_100
|
263 |
+
value: 24.484
|
264 |
- type: map_at_1000
|
265 |
+
value: 24.571
|
266 |
- type: map_at_3
|
267 |
+
value: 20.762
|
268 |
- type: map_at_5
|
269 |
+
value: 22.121
|
270 |
- type: mrr_at_1
|
271 |
+
value: 14.824000000000002
|
272 |
- type: mrr_at_10
|
273 |
+
value: 23.217
|
274 |
- type: mrr_at_100
|
275 |
+
value: 24.484
|
276 |
- type: mrr_at_1000
|
277 |
+
value: 24.571
|
278 |
- type: mrr_at_3
|
279 |
+
value: 20.762
|
280 |
- type: mrr_at_5
|
281 |
+
value: 22.121
|
282 |
- type: ndcg_at_1
|
283 |
+
value: 14.824000000000002
|
284 |
- type: ndcg_at_10
|
285 |
+
value: 27.876
|
286 |
- type: ndcg_at_100
|
287 |
+
value: 34.53
|
288 |
- type: ndcg_at_1000
|
289 |
+
value: 37.153999999999996
|
290 |
- type: ndcg_at_3
|
291 |
+
value: 22.746
|
292 |
- type: ndcg_at_5
|
293 |
+
value: 25.192999999999998
|
294 |
- type: precision_at_1
|
295 |
+
value: 14.824000000000002
|
296 |
- type: precision_at_10
|
297 |
+
value: 4.279
|
298 |
- type: precision_at_100
|
299 |
+
value: 0.75
|
300 |
- type: precision_at_1000
|
301 |
value: 0.096
|
302 |
- type: precision_at_3
|
303 |
+
value: 9.5
|
304 |
- type: precision_at_5
|
305 |
+
value: 6.888
|
306 |
- type: recall_at_1
|
307 |
+
value: 14.824000000000002
|
308 |
- type: recall_at_10
|
309 |
+
value: 42.793
|
310 |
- type: recall_at_100
|
311 |
+
value: 75.02
|
312 |
- type: recall_at_1000
|
313 |
+
value: 96.274
|
314 |
- type: recall_at_3
|
315 |
+
value: 28.500999999999998
|
316 |
- type: recall_at_5
|
317 |
+
value: 34.439
|
318 |
- task:
|
319 |
type: PairClassification
|
320 |
dataset:
|
|
|
325 |
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
|
326 |
metrics:
|
327 |
- type: cos_sim_accuracy
|
328 |
+
value: 64.7
|
329 |
- type: cos_sim_ap
|
330 |
+
value: 66.97936856243149
|
331 |
- type: cos_sim_f1
|
332 |
+
value: 64.10698878343399
|
333 |
- type: cos_sim_precision
|
334 |
+
value: 52.50883392226149
|
335 |
- type: cos_sim_recall
|
336 |
+
value: 82.281284606866
|
337 |
- type: dot_accuracy
|
338 |
+
value: 55.7
|
339 |
- type: dot_ap
|
340 |
+
value: 49.248259184437195
|
341 |
- type: dot_f1
|
342 |
value: 62.51298026998961
|
343 |
- type: dot_precision
|
|
|
345 |
- type: dot_recall
|
346 |
value: 100.0
|
347 |
- type: euclidean_accuracy
|
348 |
+
value: 65.14999999999999
|
349 |
- type: euclidean_ap
|
350 |
+
value: 67.67376405881289
|
351 |
- type: euclidean_f1
|
352 |
+
value: 64.10034602076125
|
353 |
- type: euclidean_precision
|
354 |
+
value: 52.59048970901349
|
355 |
- type: euclidean_recall
|
356 |
+
value: 82.05980066445183
|
357 |
- type: manhattan_accuracy
|
358 |
+
value: 65.2
|
359 |
- type: manhattan_ap
|
360 |
+
value: 67.68415171194316
|
361 |
- type: manhattan_f1
|
362 |
+
value: 64.16899163013153
|
363 |
- type: manhattan_precision
|
364 |
+
value: 50.12453300124533
|
365 |
- type: manhattan_recall
|
366 |
+
value: 89.14728682170544
|
367 |
- type: max_accuracy
|
368 |
+
value: 65.2
|
369 |
- type: max_ap
|
370 |
+
value: 67.68415171194316
|
371 |
- type: max_f1
|
372 |
+
value: 64.16899163013153
|
373 |
- task:
|
374 |
type: STS
|
375 |
dataset:
|
|
|
380 |
revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
|
381 |
metrics:
|
382 |
- type: cos_sim_pearson
|
383 |
+
value: 77.68761269197373
|
384 |
- type: cos_sim_spearman
|
385 |
+
value: 69.66744624141576
|
386 |
- type: euclidean_pearson
|
387 |
+
value: 72.05200050489465
|
388 |
- type: euclidean_spearman
|
389 |
+
value: 68.04895470259305
|
390 |
- type: manhattan_pearson
|
391 |
+
value: 72.16693522711834
|
392 |
- type: manhattan_spearman
|
393 |
+
value: 68.12086601967899
|
394 |
- task:
|
395 |
type: STS
|
396 |
dataset:
|
|
|
401 |
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
402 |
metrics:
|
403 |
- type: cos_sim_pearson
|
404 |
+
value: 75.11874053715779
|
405 |
- type: cos_sim_spearman
|
406 |
+
value: 78.68085137779333
|
407 |
- type: euclidean_pearson
|
408 |
+
value: 68.83921367763453
|
409 |
- type: euclidean_spearman
|
410 |
+
value: 71.35148956255736
|
411 |
- type: manhattan_pearson
|
412 |
+
value: 69.46950072200525
|
413 |
- type: manhattan_spearman
|
414 |
+
value: 71.66493261411941
|
415 |
- task:
|
416 |
type: STS
|
417 |
dataset:
|
418 |
+
type: PhilipMay/stsb_multi_mt
|
419 |
name: MTEB STSBenchmarkMultilingualSTS (fr)
|
420 |
config: fr
|
421 |
split: test
|
422 |
revision: 93d57ef91790589e3ce9c365164337a8a78b7632
|
423 |
metrics:
|
424 |
- type: cos_sim_pearson
|
425 |
+
value: 78.09242108846412
|
426 |
- type: cos_sim_spearman
|
427 |
+
value: 76.38442769094321
|
428 |
- type: euclidean_pearson
|
429 |
+
value: 76.19649405196662
|
430 |
- type: euclidean_spearman
|
431 |
+
value: 75.95441973818816
|
432 |
- type: manhattan_pearson
|
433 |
+
value: 76.13548797312832
|
434 |
- type: manhattan_spearman
|
435 |
+
value: 75.93264073187262
|
436 |
- task:
|
437 |
type: Summarization
|
438 |
dataset:
|
|
|
443 |
revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
|
444 |
metrics:
|
445 |
- type: cos_sim_pearson
|
446 |
+
value: 30.511451950181858
|
447 |
- type: cos_sim_spearman
|
448 |
+
value: 30.267871792007288
|
449 |
- type: dot_pearson
|
450 |
+
value: 27.428950856263114
|
451 |
- type: dot_spearman
|
452 |
+
value: 26.895658072972395
|
453 |
+
- task:
|
454 |
+
type: Reranking
|
455 |
+
dataset:
|
456 |
+
type: lyon-nlp/mteb-fr-reranking-syntec-s2p
|
457 |
+
name: MTEB SyntecReranking
|
458 |
+
config: default
|
459 |
+
split: test
|
460 |
+
revision: b205c5084a0934ce8af14338bf03feb19499c84d
|
461 |
+
metrics:
|
462 |
+
- type: map
|
463 |
+
value: 83.16666666666667
|
464 |
+
- type: mrr
|
465 |
+
value: 83.16666666666667
|
466 |
- task:
|
467 |
type: Retrieval
|
468 |
dataset:
|
|
|
470 |
name: MTEB SyntecRetrieval
|
471 |
config: default
|
472 |
split: test
|
473 |
+
revision: aa460cd4d177e6a3c04fcd2affd95e8243289033
|
474 |
metrics:
|
475 |
- type: map_at_1
|
476 |
+
value: 61.0
|
477 |
- type: map_at_10
|
478 |
+
value: 71.863
|
479 |
- type: map_at_100
|
480 |
+
value: 72.115
|
481 |
- type: map_at_1000
|
482 |
+
value: 72.115
|
483 |
- type: map_at_3
|
484 |
+
value: 69.0
|
485 |
- type: map_at_5
|
486 |
+
value: 70.95
|
487 |
- type: mrr_at_1
|
488 |
+
value: 61.0
|
489 |
- type: mrr_at_10
|
490 |
+
value: 71.863
|
491 |
- type: mrr_at_100
|
492 |
+
value: 72.115
|
493 |
- type: mrr_at_1000
|
494 |
+
value: 72.115
|
495 |
- type: mrr_at_3
|
496 |
+
value: 69.0
|
497 |
- type: mrr_at_5
|
498 |
+
value: 70.95
|
499 |
- type: ndcg_at_1
|
500 |
+
value: 61.0
|
501 |
- type: ndcg_at_10
|
502 |
+
value: 77.666
|
503 |
- type: ndcg_at_100
|
504 |
+
value: 78.63900000000001
|
505 |
- type: ndcg_at_1000
|
506 |
+
value: 78.63900000000001
|
507 |
- type: ndcg_at_3
|
508 |
+
value: 71.809
|
509 |
- type: ndcg_at_5
|
510 |
+
value: 75.422
|
511 |
- type: precision_at_1
|
512 |
+
value: 61.0
|
513 |
- type: precision_at_10
|
514 |
value: 9.6
|
515 |
- type: precision_at_100
|
|
|
517 |
- type: precision_at_1000
|
518 |
value: 0.1
|
519 |
- type: precision_at_3
|
520 |
+
value: 26.667
|
521 |
- type: precision_at_5
|
522 |
+
value: 17.8
|
523 |
- type: recall_at_1
|
524 |
+
value: 61.0
|
525 |
- type: recall_at_10
|
526 |
value: 96.0
|
527 |
- type: recall_at_100
|
|
|
529 |
- type: recall_at_1000
|
530 |
value: 100.0
|
531 |
- type: recall_at_3
|
532 |
+
value: 80.0
|
533 |
- type: recall_at_5
|
534 |
+
value: 89.0
|
535 |
- task:
|
536 |
type: Retrieval
|
537 |
dataset:
|
|
|
542 |
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
|
543 |
metrics:
|
544 |
- type: map_at_1
|
545 |
+
value: 37.736999999999995
|
546 |
- type: map_at_10
|
547 |
+
value: 57.842000000000006
|
548 |
- type: map_at_100
|
549 |
+
value: 59.373
|
550 |
- type: map_at_1000
|
551 |
+
value: 59.426
|
552 |
- type: map_at_3
|
553 |
+
value: 51.598
|
554 |
- type: map_at_5
|
555 |
+
value: 55.279999999999994
|
556 |
- type: mrr_at_1
|
557 |
+
value: 59.68
|
558 |
- type: mrr_at_10
|
559 |
+
value: 66.71000000000001
|
560 |
- type: mrr_at_100
|
561 |
+
value: 67.28699999999999
|
562 |
- type: mrr_at_1000
|
563 |
+
value: 67.301
|
564 |
- type: mrr_at_3
|
565 |
+
value: 64.486
|
566 |
- type: mrr_at_5
|
567 |
+
value: 65.888
|
568 |
- type: ndcg_at_1
|
569 |
+
value: 59.68
|
570 |
- type: ndcg_at_10
|
571 |
+
value: 64.27199999999999
|
572 |
- type: ndcg_at_100
|
573 |
+
value: 69.429
|
574 |
- type: ndcg_at_1000
|
575 |
+
value: 70.314
|
576 |
- type: ndcg_at_3
|
577 |
+
value: 58.569
|
578 |
- type: ndcg_at_5
|
579 |
+
value: 60.272999999999996
|
580 |
- type: precision_at_1
|
581 |
+
value: 59.68
|
582 |
- type: precision_at_10
|
583 |
+
value: 15.113
|
584 |
- type: precision_at_100
|
585 |
+
value: 1.941
|
586 |
- type: precision_at_1000
|
587 |
value: 0.20600000000000002
|
588 |
- type: precision_at_3
|
589 |
+
value: 35.514
|
590 |
- type: precision_at_5
|
591 |
+
value: 25.367
|
592 |
- type: recall_at_1
|
593 |
+
value: 37.736999999999995
|
594 |
- type: recall_at_10
|
595 |
+
value: 73.458
|
596 |
- type: recall_at_100
|
597 |
+
value: 93.554
|
598 |
- type: recall_at_1000
|
599 |
+
value: 99.346
|
600 |
- type: recall_at_3
|
601 |
+
value: 55.774
|
602 |
- type: recall_at_5
|
603 |
+
value: 63.836000000000006
|
|
|
604 |
---
|
605 |
|
606 |
# {MODEL_NAME}
|