manu commited on
Commit
fdfe543
·
verified ·
1 Parent(s): 0d3f031

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: vidore/colqwen2-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "vidore/colqwen2-base",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": "gaussian",
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.1,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 32,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
26
+ "task_type": "FEATURE_EXTRACTION",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:147ef6d31e6dcf1e9f6c5d8fa2c88bc3a21aa715220ab29d4c04c204b3f0bf4f
3
+ size 147983720
added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|box_end|>": 151649,
3
+ "<|box_start|>": 151648,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644,
7
+ "<|image_pad|>": 151655,
8
+ "<|object_ref_end|>": 151647,
9
+ "<|object_ref_start|>": 151646,
10
+ "<|quad_end|>": 151651,
11
+ "<|quad_start|>": 151650,
12
+ "<|video_pad|>": 151656,
13
+ "<|vision_end|>": 151653,
14
+ "<|vision_pad|>": 151654,
15
+ "<|vision_start|>": 151652
16
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
checkpoint-2310/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ./models/base_models/colqwen2-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-2310/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./models/base_models/colqwen2-base",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": "gaussian",
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.1,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 32,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
26
+ "task_type": "FEATURE_EXTRACTION",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-2310/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:147ef6d31e6dcf1e9f6c5d8fa2c88bc3a21aa715220ab29d4c04c204b3f0bf4f
3
+ size 147983720
checkpoint-2310/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b647718cff3619615a417919e643c6471686e5c271f02f3b8e0ac1ae6f2bdc34
3
+ size 296193520
checkpoint-2310/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf627896ea992a29f3737001f3e1489fd382a1a7a01dd6d6eb53291c96d48522
3
+ size 14244
checkpoint-2310/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f79aaad2075ba282a87e2d2c96cae3c97a7b3716636483b1e8df7079915eb3db
3
+ size 1064
checkpoint-2310/trainer_state.json ADDED
@@ -0,0 +1,1835 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 5.0,
6
+ "eval_steps": 100,
7
+ "global_step": 2310,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.021645021645021644,
14
+ "grad_norm": 2.8125383853912354,
15
+ "learning_rate": 2e-05,
16
+ "loss": 0.9514,
17
+ "step": 10
18
+ },
19
+ {
20
+ "epoch": 0.04329004329004329,
21
+ "grad_norm": 1.2800142765045166,
22
+ "learning_rate": 4e-05,
23
+ "loss": 0.7706,
24
+ "step": 20
25
+ },
26
+ {
27
+ "epoch": 0.06493506493506493,
28
+ "grad_norm": 1.0814083814620972,
29
+ "learning_rate": 6e-05,
30
+ "loss": 0.6133,
31
+ "step": 30
32
+ },
33
+ {
34
+ "epoch": 0.08658008658008658,
35
+ "grad_norm": 0.7970395088195801,
36
+ "learning_rate": 8e-05,
37
+ "loss": 0.5192,
38
+ "step": 40
39
+ },
40
+ {
41
+ "epoch": 0.10822510822510822,
42
+ "grad_norm": 0.6642207503318787,
43
+ "learning_rate": 0.0001,
44
+ "loss": 0.4351,
45
+ "step": 50
46
+ },
47
+ {
48
+ "epoch": 0.12987012987012986,
49
+ "grad_norm": 0.5111215114593506,
50
+ "learning_rate": 0.00012,
51
+ "loss": 0.3603,
52
+ "step": 60
53
+ },
54
+ {
55
+ "epoch": 0.15151515151515152,
56
+ "grad_norm": 1.2057693004608154,
57
+ "learning_rate": 0.00014,
58
+ "loss": 0.3361,
59
+ "step": 70
60
+ },
61
+ {
62
+ "epoch": 0.17316017316017315,
63
+ "grad_norm": 0.4057958424091339,
64
+ "learning_rate": 0.00016,
65
+ "loss": 0.3053,
66
+ "step": 80
67
+ },
68
+ {
69
+ "epoch": 0.19480519480519481,
70
+ "grad_norm": 0.5448099374771118,
71
+ "learning_rate": 0.00018,
72
+ "loss": 0.3024,
73
+ "step": 90
74
+ },
75
+ {
76
+ "epoch": 0.21645021645021645,
77
+ "grad_norm": 0.6636802554130554,
78
+ "learning_rate": 0.0002,
79
+ "loss": 0.2595,
80
+ "step": 100
81
+ },
82
+ {
83
+ "epoch": 0.21645021645021645,
84
+ "eval_loss": 0.1525065004825592,
85
+ "eval_runtime": 43.7956,
86
+ "eval_samples_per_second": 11.417,
87
+ "eval_steps_per_second": 0.365,
88
+ "step": 100
89
+ },
90
+ {
91
+ "epoch": 0.23809523809523808,
92
+ "grad_norm": 0.6046785116195679,
93
+ "learning_rate": 0.0001990950226244344,
94
+ "loss": 0.2407,
95
+ "step": 110
96
+ },
97
+ {
98
+ "epoch": 0.2597402597402597,
99
+ "grad_norm": 0.5757384896278381,
100
+ "learning_rate": 0.0001981900452488688,
101
+ "loss": 0.2223,
102
+ "step": 120
103
+ },
104
+ {
105
+ "epoch": 0.2813852813852814,
106
+ "grad_norm": 0.5616349577903748,
107
+ "learning_rate": 0.00019728506787330318,
108
+ "loss": 0.224,
109
+ "step": 130
110
+ },
111
+ {
112
+ "epoch": 0.30303030303030304,
113
+ "grad_norm": 0.5419019460678101,
114
+ "learning_rate": 0.00019638009049773755,
115
+ "loss": 0.2306,
116
+ "step": 140
117
+ },
118
+ {
119
+ "epoch": 0.3246753246753247,
120
+ "grad_norm": 0.49299636483192444,
121
+ "learning_rate": 0.00019547511312217194,
122
+ "loss": 0.2214,
123
+ "step": 150
124
+ },
125
+ {
126
+ "epoch": 0.3463203463203463,
127
+ "grad_norm": 0.6301876306533813,
128
+ "learning_rate": 0.00019457013574660634,
129
+ "loss": 0.2296,
130
+ "step": 160
131
+ },
132
+ {
133
+ "epoch": 0.36796536796536794,
134
+ "grad_norm": 1.009000539779663,
135
+ "learning_rate": 0.00019366515837104074,
136
+ "loss": 0.2277,
137
+ "step": 170
138
+ },
139
+ {
140
+ "epoch": 0.38961038961038963,
141
+ "grad_norm": 0.5606774091720581,
142
+ "learning_rate": 0.00019276018099547514,
143
+ "loss": 0.2235,
144
+ "step": 180
145
+ },
146
+ {
147
+ "epoch": 0.41125541125541126,
148
+ "grad_norm": 0.47087350487709045,
149
+ "learning_rate": 0.0001918552036199095,
150
+ "loss": 0.2175,
151
+ "step": 190
152
+ },
153
+ {
154
+ "epoch": 0.4329004329004329,
155
+ "grad_norm": 0.566985011100769,
156
+ "learning_rate": 0.0001909502262443439,
157
+ "loss": 0.2124,
158
+ "step": 200
159
+ },
160
+ {
161
+ "epoch": 0.4329004329004329,
162
+ "eval_loss": 0.13294899463653564,
163
+ "eval_runtime": 23.5705,
164
+ "eval_samples_per_second": 21.213,
165
+ "eval_steps_per_second": 0.679,
166
+ "step": 200
167
+ },
168
+ {
169
+ "epoch": 0.45454545454545453,
170
+ "grad_norm": 0.7860066294670105,
171
+ "learning_rate": 0.00019004524886877827,
172
+ "loss": 0.2164,
173
+ "step": 210
174
+ },
175
+ {
176
+ "epoch": 0.47619047619047616,
177
+ "grad_norm": 0.47214949131011963,
178
+ "learning_rate": 0.00018914027149321267,
179
+ "loss": 0.2086,
180
+ "step": 220
181
+ },
182
+ {
183
+ "epoch": 0.49783549783549785,
184
+ "grad_norm": 0.5978089570999146,
185
+ "learning_rate": 0.00018823529411764707,
186
+ "loss": 0.2176,
187
+ "step": 230
188
+ },
189
+ {
190
+ "epoch": 0.5194805194805194,
191
+ "grad_norm": 0.5042030811309814,
192
+ "learning_rate": 0.00018733031674208147,
193
+ "loss": 0.2003,
194
+ "step": 240
195
+ },
196
+ {
197
+ "epoch": 0.5411255411255411,
198
+ "grad_norm": 0.5709463953971863,
199
+ "learning_rate": 0.00018642533936651584,
200
+ "loss": 0.1969,
201
+ "step": 250
202
+ },
203
+ {
204
+ "epoch": 0.5627705627705628,
205
+ "grad_norm": 0.5876468420028687,
206
+ "learning_rate": 0.00018552036199095024,
207
+ "loss": 0.1928,
208
+ "step": 260
209
+ },
210
+ {
211
+ "epoch": 0.5844155844155844,
212
+ "grad_norm": 0.5380046963691711,
213
+ "learning_rate": 0.00018461538461538463,
214
+ "loss": 0.1944,
215
+ "step": 270
216
+ },
217
+ {
218
+ "epoch": 0.6060606060606061,
219
+ "grad_norm": 0.3912442624568939,
220
+ "learning_rate": 0.000183710407239819,
221
+ "loss": 0.1999,
222
+ "step": 280
223
+ },
224
+ {
225
+ "epoch": 0.6277056277056277,
226
+ "grad_norm": 0.6305837631225586,
227
+ "learning_rate": 0.0001828054298642534,
228
+ "loss": 0.1976,
229
+ "step": 290
230
+ },
231
+ {
232
+ "epoch": 0.6493506493506493,
233
+ "grad_norm": 0.6630299091339111,
234
+ "learning_rate": 0.0001819004524886878,
235
+ "loss": 0.1881,
236
+ "step": 300
237
+ },
238
+ {
239
+ "epoch": 0.6493506493506493,
240
+ "eval_loss": 0.11815983802080154,
241
+ "eval_runtime": 23.4543,
242
+ "eval_samples_per_second": 21.318,
243
+ "eval_steps_per_second": 0.682,
244
+ "step": 300
245
+ },
246
+ {
247
+ "epoch": 0.670995670995671,
248
+ "grad_norm": 0.3871740996837616,
249
+ "learning_rate": 0.00018099547511312217,
250
+ "loss": 0.1918,
251
+ "step": 310
252
+ },
253
+ {
254
+ "epoch": 0.6926406926406926,
255
+ "grad_norm": 0.39743664860725403,
256
+ "learning_rate": 0.00018009049773755657,
257
+ "loss": 0.1875,
258
+ "step": 320
259
+ },
260
+ {
261
+ "epoch": 0.7142857142857143,
262
+ "grad_norm": 0.580439031124115,
263
+ "learning_rate": 0.00017918552036199096,
264
+ "loss": 0.1881,
265
+ "step": 330
266
+ },
267
+ {
268
+ "epoch": 0.7359307359307359,
269
+ "grad_norm": 0.39449596405029297,
270
+ "learning_rate": 0.00017828054298642536,
271
+ "loss": 0.189,
272
+ "step": 340
273
+ },
274
+ {
275
+ "epoch": 0.7575757575757576,
276
+ "grad_norm": 0.5583558678627014,
277
+ "learning_rate": 0.00017737556561085973,
278
+ "loss": 0.1912,
279
+ "step": 350
280
+ },
281
+ {
282
+ "epoch": 0.7792207792207793,
283
+ "grad_norm": 0.5783946514129639,
284
+ "learning_rate": 0.00017647058823529413,
285
+ "loss": 0.1891,
286
+ "step": 360
287
+ },
288
+ {
289
+ "epoch": 0.8008658008658008,
290
+ "grad_norm": 0.5039686560630798,
291
+ "learning_rate": 0.0001755656108597285,
292
+ "loss": 0.1859,
293
+ "step": 370
294
+ },
295
+ {
296
+ "epoch": 0.8225108225108225,
297
+ "grad_norm": 0.45908617973327637,
298
+ "learning_rate": 0.0001746606334841629,
299
+ "loss": 0.1868,
300
+ "step": 380
301
+ },
302
+ {
303
+ "epoch": 0.8441558441558441,
304
+ "grad_norm": 0.4211718738079071,
305
+ "learning_rate": 0.0001737556561085973,
306
+ "loss": 0.1961,
307
+ "step": 390
308
+ },
309
+ {
310
+ "epoch": 0.8658008658008658,
311
+ "grad_norm": 0.4308678209781647,
312
+ "learning_rate": 0.0001728506787330317,
313
+ "loss": 0.2057,
314
+ "step": 400
315
+ },
316
+ {
317
+ "epoch": 0.8658008658008658,
318
+ "eval_loss": 0.12011528760194778,
319
+ "eval_runtime": 21.7151,
320
+ "eval_samples_per_second": 23.025,
321
+ "eval_steps_per_second": 0.737,
322
+ "step": 400
323
+ },
324
+ {
325
+ "epoch": 0.8874458874458875,
326
+ "grad_norm": 0.5541667342185974,
327
+ "learning_rate": 0.0001719457013574661,
328
+ "loss": 0.1946,
329
+ "step": 410
330
+ },
331
+ {
332
+ "epoch": 0.9090909090909091,
333
+ "grad_norm": 0.782439112663269,
334
+ "learning_rate": 0.00017104072398190046,
335
+ "loss": 0.1746,
336
+ "step": 420
337
+ },
338
+ {
339
+ "epoch": 0.9307359307359307,
340
+ "grad_norm": 0.4267190396785736,
341
+ "learning_rate": 0.00017013574660633486,
342
+ "loss": 0.1905,
343
+ "step": 430
344
+ },
345
+ {
346
+ "epoch": 0.9523809523809523,
347
+ "grad_norm": 0.4720573127269745,
348
+ "learning_rate": 0.00016923076923076923,
349
+ "loss": 0.1925,
350
+ "step": 440
351
+ },
352
+ {
353
+ "epoch": 0.974025974025974,
354
+ "grad_norm": 0.49390169978141785,
355
+ "learning_rate": 0.00016832579185520363,
356
+ "loss": 0.1967,
357
+ "step": 450
358
+ },
359
+ {
360
+ "epoch": 0.9956709956709957,
361
+ "grad_norm": 0.4374224841594696,
362
+ "learning_rate": 0.00016742081447963802,
363
+ "loss": 0.1813,
364
+ "step": 460
365
+ },
366
+ {
367
+ "epoch": 1.0173160173160174,
368
+ "grad_norm": 0.4421156048774719,
369
+ "learning_rate": 0.00016651583710407242,
370
+ "loss": 0.1673,
371
+ "step": 470
372
+ },
373
+ {
374
+ "epoch": 1.0389610389610389,
375
+ "grad_norm": 0.35764458775520325,
376
+ "learning_rate": 0.0001656108597285068,
377
+ "loss": 0.1759,
378
+ "step": 480
379
+ },
380
+ {
381
+ "epoch": 1.0606060606060606,
382
+ "grad_norm": 0.36364632844924927,
383
+ "learning_rate": 0.0001647058823529412,
384
+ "loss": 0.1726,
385
+ "step": 490
386
+ },
387
+ {
388
+ "epoch": 1.0822510822510822,
389
+ "grad_norm": 0.37476664781570435,
390
+ "learning_rate": 0.00016380090497737556,
391
+ "loss": 0.1819,
392
+ "step": 500
393
+ },
394
+ {
395
+ "epoch": 1.0822510822510822,
396
+ "eval_loss": 0.12120614945888519,
397
+ "eval_runtime": 38.4695,
398
+ "eval_samples_per_second": 12.997,
399
+ "eval_steps_per_second": 0.416,
400
+ "step": 500
401
+ },
402
+ {
403
+ "epoch": 1.103896103896104,
404
+ "grad_norm": 0.4027290344238281,
405
+ "learning_rate": 0.00016289592760180996,
406
+ "loss": 0.1633,
407
+ "step": 510
408
+ },
409
+ {
410
+ "epoch": 1.1255411255411256,
411
+ "grad_norm": 0.3566421866416931,
412
+ "learning_rate": 0.00016199095022624435,
413
+ "loss": 0.1607,
414
+ "step": 520
415
+ },
416
+ {
417
+ "epoch": 1.1471861471861473,
418
+ "grad_norm": 0.4911403954029083,
419
+ "learning_rate": 0.00016108597285067875,
420
+ "loss": 0.1655,
421
+ "step": 530
422
+ },
423
+ {
424
+ "epoch": 1.1688311688311688,
425
+ "grad_norm": 0.3717828392982483,
426
+ "learning_rate": 0.00016018099547511315,
427
+ "loss": 0.1646,
428
+ "step": 540
429
+ },
430
+ {
431
+ "epoch": 1.1904761904761905,
432
+ "grad_norm": 0.4402911961078644,
433
+ "learning_rate": 0.00015927601809954752,
434
+ "loss": 0.1677,
435
+ "step": 550
436
+ },
437
+ {
438
+ "epoch": 1.2121212121212122,
439
+ "grad_norm": 0.4106089770793915,
440
+ "learning_rate": 0.0001583710407239819,
441
+ "loss": 0.1607,
442
+ "step": 560
443
+ },
444
+ {
445
+ "epoch": 1.2337662337662338,
446
+ "grad_norm": 0.4335547387599945,
447
+ "learning_rate": 0.0001574660633484163,
448
+ "loss": 0.1625,
449
+ "step": 570
450
+ },
451
+ {
452
+ "epoch": 1.2554112554112553,
453
+ "grad_norm": 0.3730684816837311,
454
+ "learning_rate": 0.00015656108597285069,
455
+ "loss": 0.1627,
456
+ "step": 580
457
+ },
458
+ {
459
+ "epoch": 1.277056277056277,
460
+ "grad_norm": 0.4024712145328522,
461
+ "learning_rate": 0.00015565610859728508,
462
+ "loss": 0.1575,
463
+ "step": 590
464
+ },
465
+ {
466
+ "epoch": 1.2987012987012987,
467
+ "grad_norm": 0.5081992745399475,
468
+ "learning_rate": 0.00015475113122171948,
469
+ "loss": 0.1654,
470
+ "step": 600
471
+ },
472
+ {
473
+ "epoch": 1.2987012987012987,
474
+ "eval_loss": 0.11448249965906143,
475
+ "eval_runtime": 25.9879,
476
+ "eval_samples_per_second": 19.24,
477
+ "eval_steps_per_second": 0.616,
478
+ "step": 600
479
+ },
480
+ {
481
+ "epoch": 1.3203463203463204,
482
+ "grad_norm": 0.5350440144538879,
483
+ "learning_rate": 0.00015384615384615385,
484
+ "loss": 0.158,
485
+ "step": 610
486
+ },
487
+ {
488
+ "epoch": 1.341991341991342,
489
+ "grad_norm": 0.44623634219169617,
490
+ "learning_rate": 0.00015294117647058822,
491
+ "loss": 0.1628,
492
+ "step": 620
493
+ },
494
+ {
495
+ "epoch": 1.3636363636363638,
496
+ "grad_norm": 0.4370821714401245,
497
+ "learning_rate": 0.00015203619909502262,
498
+ "loss": 0.1563,
499
+ "step": 630
500
+ },
501
+ {
502
+ "epoch": 1.3852813852813852,
503
+ "grad_norm": 0.35637155175209045,
504
+ "learning_rate": 0.00015113122171945702,
505
+ "loss": 0.1706,
506
+ "step": 640
507
+ },
508
+ {
509
+ "epoch": 1.406926406926407,
510
+ "grad_norm": 0.3456045687198639,
511
+ "learning_rate": 0.00015022624434389141,
512
+ "loss": 0.1695,
513
+ "step": 650
514
+ },
515
+ {
516
+ "epoch": 1.4285714285714286,
517
+ "grad_norm": 0.48406872153282166,
518
+ "learning_rate": 0.0001493212669683258,
519
+ "loss": 0.1561,
520
+ "step": 660
521
+ },
522
+ {
523
+ "epoch": 1.4502164502164503,
524
+ "grad_norm": 0.45908018946647644,
525
+ "learning_rate": 0.00014841628959276018,
526
+ "loss": 0.1584,
527
+ "step": 670
528
+ },
529
+ {
530
+ "epoch": 1.4718614718614718,
531
+ "grad_norm": 0.4222131073474884,
532
+ "learning_rate": 0.00014751131221719458,
533
+ "loss": 0.1524,
534
+ "step": 680
535
+ },
536
+ {
537
+ "epoch": 1.4935064935064934,
538
+ "grad_norm": 0.40552523732185364,
539
+ "learning_rate": 0.00014660633484162895,
540
+ "loss": 0.1664,
541
+ "step": 690
542
+ },
543
+ {
544
+ "epoch": 1.5151515151515151,
545
+ "grad_norm": 0.441180020570755,
546
+ "learning_rate": 0.00014570135746606335,
547
+ "loss": 0.1732,
548
+ "step": 700
549
+ },
550
+ {
551
+ "epoch": 1.5151515151515151,
552
+ "eval_loss": 0.10767688602209091,
553
+ "eval_runtime": 25.2267,
554
+ "eval_samples_per_second": 19.82,
555
+ "eval_steps_per_second": 0.634,
556
+ "step": 700
557
+ },
558
+ {
559
+ "epoch": 1.5367965367965368,
560
+ "grad_norm": 0.39050132036209106,
561
+ "learning_rate": 0.00014479638009049775,
562
+ "loss": 0.1544,
563
+ "step": 710
564
+ },
565
+ {
566
+ "epoch": 1.5584415584415585,
567
+ "grad_norm": 0.37475523352622986,
568
+ "learning_rate": 0.00014389140271493214,
569
+ "loss": 0.1534,
570
+ "step": 720
571
+ },
572
+ {
573
+ "epoch": 1.5800865800865802,
574
+ "grad_norm": 0.3851136267185211,
575
+ "learning_rate": 0.00014298642533936651,
576
+ "loss": 0.1623,
577
+ "step": 730
578
+ },
579
+ {
580
+ "epoch": 1.601731601731602,
581
+ "grad_norm": 0.37124335765838623,
582
+ "learning_rate": 0.0001420814479638009,
583
+ "loss": 0.152,
584
+ "step": 740
585
+ },
586
+ {
587
+ "epoch": 1.6233766233766234,
588
+ "grad_norm": 0.3956158459186554,
589
+ "learning_rate": 0.0001411764705882353,
590
+ "loss": 0.1619,
591
+ "step": 750
592
+ },
593
+ {
594
+ "epoch": 1.645021645021645,
595
+ "grad_norm": 0.34193211793899536,
596
+ "learning_rate": 0.00014027149321266968,
597
+ "loss": 0.158,
598
+ "step": 760
599
+ },
600
+ {
601
+ "epoch": 1.6666666666666665,
602
+ "grad_norm": 0.5510150194168091,
603
+ "learning_rate": 0.00013936651583710408,
604
+ "loss": 0.158,
605
+ "step": 770
606
+ },
607
+ {
608
+ "epoch": 1.6883116883116882,
609
+ "grad_norm": 0.6107664108276367,
610
+ "learning_rate": 0.00013846153846153847,
611
+ "loss": 0.1487,
612
+ "step": 780
613
+ },
614
+ {
615
+ "epoch": 1.70995670995671,
616
+ "grad_norm": 0.4111076295375824,
617
+ "learning_rate": 0.00013755656108597284,
618
+ "loss": 0.1588,
619
+ "step": 790
620
+ },
621
+ {
622
+ "epoch": 1.7316017316017316,
623
+ "grad_norm": 0.5250778198242188,
624
+ "learning_rate": 0.00013665158371040724,
625
+ "loss": 0.1653,
626
+ "step": 800
627
+ },
628
+ {
629
+ "epoch": 1.7316017316017316,
630
+ "eval_loss": 0.10399862378835678,
631
+ "eval_runtime": 23.9812,
632
+ "eval_samples_per_second": 20.85,
633
+ "eval_steps_per_second": 0.667,
634
+ "step": 800
635
+ },
636
+ {
637
+ "epoch": 1.7532467532467533,
638
+ "grad_norm": 0.4260198771953583,
639
+ "learning_rate": 0.00013574660633484164,
640
+ "loss": 0.1482,
641
+ "step": 810
642
+ },
643
+ {
644
+ "epoch": 1.774891774891775,
645
+ "grad_norm": 0.28968125581741333,
646
+ "learning_rate": 0.00013484162895927604,
647
+ "loss": 0.1541,
648
+ "step": 820
649
+ },
650
+ {
651
+ "epoch": 1.7965367965367967,
652
+ "grad_norm": 0.29932093620300293,
653
+ "learning_rate": 0.0001339366515837104,
654
+ "loss": 0.1625,
655
+ "step": 830
656
+ },
657
+ {
658
+ "epoch": 1.8181818181818183,
659
+ "grad_norm": 0.4358128011226654,
660
+ "learning_rate": 0.0001330316742081448,
661
+ "loss": 0.1658,
662
+ "step": 840
663
+ },
664
+ {
665
+ "epoch": 1.8398268398268398,
666
+ "grad_norm": 0.4161946773529053,
667
+ "learning_rate": 0.00013212669683257918,
668
+ "loss": 0.1472,
669
+ "step": 850
670
+ },
671
+ {
672
+ "epoch": 1.8614718614718615,
673
+ "grad_norm": 0.3558347225189209,
674
+ "learning_rate": 0.00013122171945701357,
675
+ "loss": 0.1671,
676
+ "step": 860
677
+ },
678
+ {
679
+ "epoch": 1.883116883116883,
680
+ "grad_norm": 0.41748765110969543,
681
+ "learning_rate": 0.00013031674208144797,
682
+ "loss": 0.1664,
683
+ "step": 870
684
+ },
685
+ {
686
+ "epoch": 1.9047619047619047,
687
+ "grad_norm": 0.5195390582084656,
688
+ "learning_rate": 0.00012941176470588237,
689
+ "loss": 0.1603,
690
+ "step": 880
691
+ },
692
+ {
693
+ "epoch": 1.9264069264069263,
694
+ "grad_norm": 0.344159334897995,
695
+ "learning_rate": 0.00012850678733031677,
696
+ "loss": 0.1589,
697
+ "step": 890
698
+ },
699
+ {
700
+ "epoch": 1.948051948051948,
701
+ "grad_norm": 0.4217064380645752,
702
+ "learning_rate": 0.00012760180995475114,
703
+ "loss": 0.1631,
704
+ "step": 900
705
+ },
706
+ {
707
+ "epoch": 1.948051948051948,
708
+ "eval_loss": 0.11024898290634155,
709
+ "eval_runtime": 26.0192,
710
+ "eval_samples_per_second": 19.217,
711
+ "eval_steps_per_second": 0.615,
712
+ "step": 900
713
+ },
714
+ {
715
+ "epoch": 1.9696969696969697,
716
+ "grad_norm": 0.377990186214447,
717
+ "learning_rate": 0.0001266968325791855,
718
+ "loss": 0.162,
719
+ "step": 910
720
+ },
721
+ {
722
+ "epoch": 1.9913419913419914,
723
+ "grad_norm": 0.3964829742908478,
724
+ "learning_rate": 0.0001257918552036199,
725
+ "loss": 0.1565,
726
+ "step": 920
727
+ },
728
+ {
729
+ "epoch": 2.012987012987013,
730
+ "grad_norm": 0.31516608595848083,
731
+ "learning_rate": 0.0001248868778280543,
732
+ "loss": 0.1356,
733
+ "step": 930
734
+ },
735
+ {
736
+ "epoch": 2.034632034632035,
737
+ "grad_norm": 0.4001309275627136,
738
+ "learning_rate": 0.0001239819004524887,
739
+ "loss": 0.1398,
740
+ "step": 940
741
+ },
742
+ {
743
+ "epoch": 2.0562770562770565,
744
+ "grad_norm": 0.2704612612724304,
745
+ "learning_rate": 0.0001230769230769231,
746
+ "loss": 0.139,
747
+ "step": 950
748
+ },
749
+ {
750
+ "epoch": 2.0779220779220777,
751
+ "grad_norm": 0.37967827916145325,
752
+ "learning_rate": 0.0001221719457013575,
753
+ "loss": 0.1474,
754
+ "step": 960
755
+ },
756
+ {
757
+ "epoch": 2.0995670995670994,
758
+ "grad_norm": 0.3611961603164673,
759
+ "learning_rate": 0.00012126696832579185,
760
+ "loss": 0.1394,
761
+ "step": 970
762
+ },
763
+ {
764
+ "epoch": 2.121212121212121,
765
+ "grad_norm": 0.38165083527565,
766
+ "learning_rate": 0.00012036199095022625,
767
+ "loss": 0.1509,
768
+ "step": 980
769
+ },
770
+ {
771
+ "epoch": 2.142857142857143,
772
+ "grad_norm": 0.44539740681648254,
773
+ "learning_rate": 0.00011945701357466063,
774
+ "loss": 0.1335,
775
+ "step": 990
776
+ },
777
+ {
778
+ "epoch": 2.1645021645021645,
779
+ "grad_norm": 0.2796030044555664,
780
+ "learning_rate": 0.00011855203619909503,
781
+ "loss": 0.1354,
782
+ "step": 1000
783
+ },
784
+ {
785
+ "epoch": 2.1645021645021645,
786
+ "eval_loss": 0.11003410071134567,
787
+ "eval_runtime": 23.006,
788
+ "eval_samples_per_second": 21.733,
789
+ "eval_steps_per_second": 0.695,
790
+ "step": 1000
791
+ },
792
+ {
793
+ "epoch": 2.186147186147186,
794
+ "grad_norm": 0.39886558055877686,
795
+ "learning_rate": 0.00011764705882352942,
796
+ "loss": 0.1365,
797
+ "step": 1010
798
+ },
799
+ {
800
+ "epoch": 2.207792207792208,
801
+ "grad_norm": 0.27149999141693115,
802
+ "learning_rate": 0.00011674208144796381,
803
+ "loss": 0.1303,
804
+ "step": 1020
805
+ },
806
+ {
807
+ "epoch": 2.2294372294372296,
808
+ "grad_norm": 0.4485577940940857,
809
+ "learning_rate": 0.00011583710407239821,
810
+ "loss": 0.136,
811
+ "step": 1030
812
+ },
813
+ {
814
+ "epoch": 2.2510822510822512,
815
+ "grad_norm": 0.5114185214042664,
816
+ "learning_rate": 0.00011493212669683258,
817
+ "loss": 0.129,
818
+ "step": 1040
819
+ },
820
+ {
821
+ "epoch": 2.2727272727272725,
822
+ "grad_norm": 0.41526681184768677,
823
+ "learning_rate": 0.00011402714932126696,
824
+ "loss": 0.1352,
825
+ "step": 1050
826
+ },
827
+ {
828
+ "epoch": 2.2943722943722946,
829
+ "grad_norm": 0.4560807943344116,
830
+ "learning_rate": 0.00011312217194570136,
831
+ "loss": 0.1473,
832
+ "step": 1060
833
+ },
834
+ {
835
+ "epoch": 2.316017316017316,
836
+ "grad_norm": 0.4193613529205322,
837
+ "learning_rate": 0.00011221719457013576,
838
+ "loss": 0.1427,
839
+ "step": 1070
840
+ },
841
+ {
842
+ "epoch": 2.3376623376623376,
843
+ "grad_norm": 0.5285654664039612,
844
+ "learning_rate": 0.00011131221719457014,
845
+ "loss": 0.1395,
846
+ "step": 1080
847
+ },
848
+ {
849
+ "epoch": 2.3593073593073592,
850
+ "grad_norm": 0.3672701120376587,
851
+ "learning_rate": 0.00011040723981900454,
852
+ "loss": 0.1303,
853
+ "step": 1090
854
+ },
855
+ {
856
+ "epoch": 2.380952380952381,
857
+ "grad_norm": 0.4193953573703766,
858
+ "learning_rate": 0.00010950226244343893,
859
+ "loss": 0.1353,
860
+ "step": 1100
861
+ },
862
+ {
863
+ "epoch": 2.380952380952381,
864
+ "eval_loss": 0.10145355015993118,
865
+ "eval_runtime": 20.0537,
866
+ "eval_samples_per_second": 24.933,
867
+ "eval_steps_per_second": 0.798,
868
+ "step": 1100
869
+ },
870
+ {
871
+ "epoch": 2.4025974025974026,
872
+ "grad_norm": 0.39170539379119873,
873
+ "learning_rate": 0.0001085972850678733,
874
+ "loss": 0.1344,
875
+ "step": 1110
876
+ },
877
+ {
878
+ "epoch": 2.4242424242424243,
879
+ "grad_norm": 0.4148479104042053,
880
+ "learning_rate": 0.0001076923076923077,
881
+ "loss": 0.1463,
882
+ "step": 1120
883
+ },
884
+ {
885
+ "epoch": 2.445887445887446,
886
+ "grad_norm": 0.3758697211742401,
887
+ "learning_rate": 0.00010678733031674209,
888
+ "loss": 0.1338,
889
+ "step": 1130
890
+ },
891
+ {
892
+ "epoch": 2.4675324675324677,
893
+ "grad_norm": 0.3020533621311188,
894
+ "learning_rate": 0.00010588235294117647,
895
+ "loss": 0.1369,
896
+ "step": 1140
897
+ },
898
+ {
899
+ "epoch": 2.4891774891774894,
900
+ "grad_norm": 0.3161577582359314,
901
+ "learning_rate": 0.00010497737556561087,
902
+ "loss": 0.1438,
903
+ "step": 1150
904
+ },
905
+ {
906
+ "epoch": 2.5108225108225106,
907
+ "grad_norm": 0.39273881912231445,
908
+ "learning_rate": 0.00010407239819004526,
909
+ "loss": 0.1404,
910
+ "step": 1160
911
+ },
912
+ {
913
+ "epoch": 2.5324675324675323,
914
+ "grad_norm": 0.3449176251888275,
915
+ "learning_rate": 0.00010316742081447965,
916
+ "loss": 0.1346,
917
+ "step": 1170
918
+ },
919
+ {
920
+ "epoch": 2.554112554112554,
921
+ "grad_norm": 0.261294960975647,
922
+ "learning_rate": 0.00010226244343891402,
923
+ "loss": 0.1244,
924
+ "step": 1180
925
+ },
926
+ {
927
+ "epoch": 2.5757575757575757,
928
+ "grad_norm": 0.5024470686912537,
929
+ "learning_rate": 0.00010135746606334842,
930
+ "loss": 0.1385,
931
+ "step": 1190
932
+ },
933
+ {
934
+ "epoch": 2.5974025974025974,
935
+ "grad_norm": 0.4657529294490814,
936
+ "learning_rate": 0.0001004524886877828,
937
+ "loss": 0.1458,
938
+ "step": 1200
939
+ },
940
+ {
941
+ "epoch": 2.5974025974025974,
942
+ "eval_loss": 0.09968920797109604,
943
+ "eval_runtime": 22.2909,
944
+ "eval_samples_per_second": 22.431,
945
+ "eval_steps_per_second": 0.718,
946
+ "step": 1200
947
+ },
948
+ {
949
+ "epoch": 2.619047619047619,
950
+ "grad_norm": 0.28800147771835327,
951
+ "learning_rate": 9.95475113122172e-05,
952
+ "loss": 0.1366,
953
+ "step": 1210
954
+ },
955
+ {
956
+ "epoch": 2.6406926406926408,
957
+ "grad_norm": 0.24663890898227692,
958
+ "learning_rate": 9.864253393665159e-05,
959
+ "loss": 0.1315,
960
+ "step": 1220
961
+ },
962
+ {
963
+ "epoch": 2.6623376623376624,
964
+ "grad_norm": 0.3126956522464752,
965
+ "learning_rate": 9.773755656108597e-05,
966
+ "loss": 0.1305,
967
+ "step": 1230
968
+ },
969
+ {
970
+ "epoch": 2.683982683982684,
971
+ "grad_norm": 0.34753990173339844,
972
+ "learning_rate": 9.683257918552037e-05,
973
+ "loss": 0.1326,
974
+ "step": 1240
975
+ },
976
+ {
977
+ "epoch": 2.7056277056277054,
978
+ "grad_norm": 0.4045655429363251,
979
+ "learning_rate": 9.592760180995475e-05,
980
+ "loss": 0.147,
981
+ "step": 1250
982
+ },
983
+ {
984
+ "epoch": 2.7272727272727275,
985
+ "grad_norm": 0.369632750749588,
986
+ "learning_rate": 9.502262443438914e-05,
987
+ "loss": 0.1339,
988
+ "step": 1260
989
+ },
990
+ {
991
+ "epoch": 2.7489177489177488,
992
+ "grad_norm": 0.3891206383705139,
993
+ "learning_rate": 9.411764705882353e-05,
994
+ "loss": 0.1326,
995
+ "step": 1270
996
+ },
997
+ {
998
+ "epoch": 2.7705627705627704,
999
+ "grad_norm": 0.4095381498336792,
1000
+ "learning_rate": 9.321266968325792e-05,
1001
+ "loss": 0.1305,
1002
+ "step": 1280
1003
+ },
1004
+ {
1005
+ "epoch": 2.792207792207792,
1006
+ "grad_norm": 0.39312949776649475,
1007
+ "learning_rate": 9.230769230769232e-05,
1008
+ "loss": 0.1348,
1009
+ "step": 1290
1010
+ },
1011
+ {
1012
+ "epoch": 2.813852813852814,
1013
+ "grad_norm": 0.4769635498523712,
1014
+ "learning_rate": 9.14027149321267e-05,
1015
+ "loss": 0.1292,
1016
+ "step": 1300
1017
+ },
1018
+ {
1019
+ "epoch": 2.813852813852814,
1020
+ "eval_loss": 0.09773257374763489,
1021
+ "eval_runtime": 21.4232,
1022
+ "eval_samples_per_second": 23.339,
1023
+ "eval_steps_per_second": 0.747,
1024
+ "step": 1300
1025
+ },
1026
+ {
1027
+ "epoch": 2.8354978354978355,
1028
+ "grad_norm": 0.4419485628604889,
1029
+ "learning_rate": 9.049773755656108e-05,
1030
+ "loss": 0.1332,
1031
+ "step": 1310
1032
+ },
1033
+ {
1034
+ "epoch": 2.857142857142857,
1035
+ "grad_norm": 0.273708313703537,
1036
+ "learning_rate": 8.959276018099548e-05,
1037
+ "loss": 0.1351,
1038
+ "step": 1320
1039
+ },
1040
+ {
1041
+ "epoch": 2.878787878787879,
1042
+ "grad_norm": 0.41094347834587097,
1043
+ "learning_rate": 8.868778280542987e-05,
1044
+ "loss": 0.1436,
1045
+ "step": 1330
1046
+ },
1047
+ {
1048
+ "epoch": 2.9004329004329006,
1049
+ "grad_norm": 0.3220170736312866,
1050
+ "learning_rate": 8.778280542986425e-05,
1051
+ "loss": 0.1372,
1052
+ "step": 1340
1053
+ },
1054
+ {
1055
+ "epoch": 2.9220779220779223,
1056
+ "grad_norm": 0.3632793128490448,
1057
+ "learning_rate": 8.687782805429865e-05,
1058
+ "loss": 0.1421,
1059
+ "step": 1350
1060
+ },
1061
+ {
1062
+ "epoch": 2.9437229437229435,
1063
+ "grad_norm": 0.33830907940864563,
1064
+ "learning_rate": 8.597285067873304e-05,
1065
+ "loss": 0.1452,
1066
+ "step": 1360
1067
+ },
1068
+ {
1069
+ "epoch": 2.965367965367965,
1070
+ "grad_norm": 0.3863072097301483,
1071
+ "learning_rate": 8.506787330316743e-05,
1072
+ "loss": 0.1424,
1073
+ "step": 1370
1074
+ },
1075
+ {
1076
+ "epoch": 2.987012987012987,
1077
+ "grad_norm": 0.5766463279724121,
1078
+ "learning_rate": 8.416289592760181e-05,
1079
+ "loss": 0.1424,
1080
+ "step": 1380
1081
+ },
1082
+ {
1083
+ "epoch": 3.0086580086580086,
1084
+ "grad_norm": 0.23465487360954285,
1085
+ "learning_rate": 8.325791855203621e-05,
1086
+ "loss": 0.1241,
1087
+ "step": 1390
1088
+ },
1089
+ {
1090
+ "epoch": 3.0303030303030303,
1091
+ "grad_norm": 0.32335883378982544,
1092
+ "learning_rate": 8.23529411764706e-05,
1093
+ "loss": 0.1181,
1094
+ "step": 1400
1095
+ },
1096
+ {
1097
+ "epoch": 3.0303030303030303,
1098
+ "eval_loss": 0.10378438234329224,
1099
+ "eval_runtime": 24.145,
1100
+ "eval_samples_per_second": 20.708,
1101
+ "eval_steps_per_second": 0.663,
1102
+ "step": 1400
1103
+ },
1104
+ {
1105
+ "epoch": 3.051948051948052,
1106
+ "grad_norm": 0.3104758560657501,
1107
+ "learning_rate": 8.144796380090498e-05,
1108
+ "loss": 0.1227,
1109
+ "step": 1410
1110
+ },
1111
+ {
1112
+ "epoch": 3.0735930735930737,
1113
+ "grad_norm": 0.27100279927253723,
1114
+ "learning_rate": 8.054298642533938e-05,
1115
+ "loss": 0.1164,
1116
+ "step": 1420
1117
+ },
1118
+ {
1119
+ "epoch": 3.0952380952380953,
1120
+ "grad_norm": 0.3317118287086487,
1121
+ "learning_rate": 7.963800904977376e-05,
1122
+ "loss": 0.1233,
1123
+ "step": 1430
1124
+ },
1125
+ {
1126
+ "epoch": 3.116883116883117,
1127
+ "grad_norm": 0.41682133078575134,
1128
+ "learning_rate": 7.873303167420814e-05,
1129
+ "loss": 0.1213,
1130
+ "step": 1440
1131
+ },
1132
+ {
1133
+ "epoch": 3.1385281385281387,
1134
+ "grad_norm": 0.31365829706192017,
1135
+ "learning_rate": 7.782805429864254e-05,
1136
+ "loss": 0.1183,
1137
+ "step": 1450
1138
+ },
1139
+ {
1140
+ "epoch": 3.16017316017316,
1141
+ "grad_norm": 0.3687366247177124,
1142
+ "learning_rate": 7.692307692307693e-05,
1143
+ "loss": 0.119,
1144
+ "step": 1460
1145
+ },
1146
+ {
1147
+ "epoch": 3.1818181818181817,
1148
+ "grad_norm": 0.4626697599887848,
1149
+ "learning_rate": 7.601809954751131e-05,
1150
+ "loss": 0.1244,
1151
+ "step": 1470
1152
+ },
1153
+ {
1154
+ "epoch": 3.2034632034632033,
1155
+ "grad_norm": 0.46320992708206177,
1156
+ "learning_rate": 7.511312217194571e-05,
1157
+ "loss": 0.1214,
1158
+ "step": 1480
1159
+ },
1160
+ {
1161
+ "epoch": 3.225108225108225,
1162
+ "grad_norm": 0.3054867386817932,
1163
+ "learning_rate": 7.420814479638009e-05,
1164
+ "loss": 0.1276,
1165
+ "step": 1490
1166
+ },
1167
+ {
1168
+ "epoch": 3.2467532467532467,
1169
+ "grad_norm": 0.26975077390670776,
1170
+ "learning_rate": 7.330316742081448e-05,
1171
+ "loss": 0.1235,
1172
+ "step": 1500
1173
+ },
1174
+ {
1175
+ "epoch": 3.2467532467532467,
1176
+ "eval_loss": 0.10016042739152908,
1177
+ "eval_runtime": 23.6078,
1178
+ "eval_samples_per_second": 21.179,
1179
+ "eval_steps_per_second": 0.678,
1180
+ "step": 1500
1181
+ },
1182
+ {
1183
+ "epoch": 3.2683982683982684,
1184
+ "grad_norm": 0.33022555708885193,
1185
+ "learning_rate": 7.239819004524887e-05,
1186
+ "loss": 0.12,
1187
+ "step": 1510
1188
+ },
1189
+ {
1190
+ "epoch": 3.29004329004329,
1191
+ "grad_norm": 0.4828197956085205,
1192
+ "learning_rate": 7.149321266968326e-05,
1193
+ "loss": 0.1299,
1194
+ "step": 1520
1195
+ },
1196
+ {
1197
+ "epoch": 3.311688311688312,
1198
+ "grad_norm": 0.36965712904930115,
1199
+ "learning_rate": 7.058823529411765e-05,
1200
+ "loss": 0.1217,
1201
+ "step": 1530
1202
+ },
1203
+ {
1204
+ "epoch": 3.3333333333333335,
1205
+ "grad_norm": 0.4338422417640686,
1206
+ "learning_rate": 6.968325791855204e-05,
1207
+ "loss": 0.1276,
1208
+ "step": 1540
1209
+ },
1210
+ {
1211
+ "epoch": 3.354978354978355,
1212
+ "grad_norm": 0.40615785121917725,
1213
+ "learning_rate": 6.877828054298642e-05,
1214
+ "loss": 0.1214,
1215
+ "step": 1550
1216
+ },
1217
+ {
1218
+ "epoch": 3.3766233766233764,
1219
+ "grad_norm": 0.2703055739402771,
1220
+ "learning_rate": 6.787330316742082e-05,
1221
+ "loss": 0.1179,
1222
+ "step": 1560
1223
+ },
1224
+ {
1225
+ "epoch": 3.398268398268398,
1226
+ "grad_norm": 0.469108521938324,
1227
+ "learning_rate": 6.69683257918552e-05,
1228
+ "loss": 0.1189,
1229
+ "step": 1570
1230
+ },
1231
+ {
1232
+ "epoch": 3.41991341991342,
1233
+ "grad_norm": 0.2688772976398468,
1234
+ "learning_rate": 6.606334841628959e-05,
1235
+ "loss": 0.1174,
1236
+ "step": 1580
1237
+ },
1238
+ {
1239
+ "epoch": 3.4415584415584415,
1240
+ "grad_norm": 0.2989065647125244,
1241
+ "learning_rate": 6.515837104072399e-05,
1242
+ "loss": 0.111,
1243
+ "step": 1590
1244
+ },
1245
+ {
1246
+ "epoch": 3.463203463203463,
1247
+ "grad_norm": 0.397502601146698,
1248
+ "learning_rate": 6.425339366515838e-05,
1249
+ "loss": 0.1189,
1250
+ "step": 1600
1251
+ },
1252
+ {
1253
+ "epoch": 3.463203463203463,
1254
+ "eval_loss": 0.10202713310718536,
1255
+ "eval_runtime": 25.0286,
1256
+ "eval_samples_per_second": 19.977,
1257
+ "eval_steps_per_second": 0.639,
1258
+ "step": 1600
1259
+ },
1260
+ {
1261
+ "epoch": 3.484848484848485,
1262
+ "grad_norm": 0.3283541202545166,
1263
+ "learning_rate": 6.334841628959275e-05,
1264
+ "loss": 0.1216,
1265
+ "step": 1610
1266
+ },
1267
+ {
1268
+ "epoch": 3.5064935064935066,
1269
+ "grad_norm": 0.3664211928844452,
1270
+ "learning_rate": 6.244343891402715e-05,
1271
+ "loss": 0.1171,
1272
+ "step": 1620
1273
+ },
1274
+ {
1275
+ "epoch": 3.5281385281385282,
1276
+ "grad_norm": 0.33489325642585754,
1277
+ "learning_rate": 6.153846153846155e-05,
1278
+ "loss": 0.1222,
1279
+ "step": 1630
1280
+ },
1281
+ {
1282
+ "epoch": 3.54978354978355,
1283
+ "grad_norm": 0.27272143959999084,
1284
+ "learning_rate": 6.0633484162895926e-05,
1285
+ "loss": 0.1089,
1286
+ "step": 1640
1287
+ },
1288
+ {
1289
+ "epoch": 3.571428571428571,
1290
+ "grad_norm": 0.3384559750556946,
1291
+ "learning_rate": 5.972850678733032e-05,
1292
+ "loss": 0.1092,
1293
+ "step": 1650
1294
+ },
1295
+ {
1296
+ "epoch": 3.5930735930735933,
1297
+ "grad_norm": 0.4882173240184784,
1298
+ "learning_rate": 5.882352941176471e-05,
1299
+ "loss": 0.1326,
1300
+ "step": 1660
1301
+ },
1302
+ {
1303
+ "epoch": 3.6147186147186146,
1304
+ "grad_norm": 0.33967503905296326,
1305
+ "learning_rate": 5.7918552036199105e-05,
1306
+ "loss": 0.119,
1307
+ "step": 1670
1308
+ },
1309
+ {
1310
+ "epoch": 3.6363636363636362,
1311
+ "grad_norm": 0.30732062458992004,
1312
+ "learning_rate": 5.701357466063348e-05,
1313
+ "loss": 0.1115,
1314
+ "step": 1680
1315
+ },
1316
+ {
1317
+ "epoch": 3.658008658008658,
1318
+ "grad_norm": 0.46696531772613525,
1319
+ "learning_rate": 5.610859728506788e-05,
1320
+ "loss": 0.1246,
1321
+ "step": 1690
1322
+ },
1323
+ {
1324
+ "epoch": 3.6796536796536796,
1325
+ "grad_norm": 0.4071387052536011,
1326
+ "learning_rate": 5.520361990950227e-05,
1327
+ "loss": 0.1305,
1328
+ "step": 1700
1329
+ },
1330
+ {
1331
+ "epoch": 3.6796536796536796,
1332
+ "eval_loss": 0.09984961152076721,
1333
+ "eval_runtime": 22.2364,
1334
+ "eval_samples_per_second": 22.486,
1335
+ "eval_steps_per_second": 0.72,
1336
+ "step": 1700
1337
+ },
1338
+ {
1339
+ "epoch": 3.7012987012987013,
1340
+ "grad_norm": 0.34078463912010193,
1341
+ "learning_rate": 5.429864253393665e-05,
1342
+ "loss": 0.1227,
1343
+ "step": 1710
1344
+ },
1345
+ {
1346
+ "epoch": 3.722943722943723,
1347
+ "grad_norm": 0.46931177377700806,
1348
+ "learning_rate": 5.3393665158371045e-05,
1349
+ "loss": 0.1222,
1350
+ "step": 1720
1351
+ },
1352
+ {
1353
+ "epoch": 3.7445887445887447,
1354
+ "grad_norm": 0.28127625584602356,
1355
+ "learning_rate": 5.2488687782805436e-05,
1356
+ "loss": 0.1186,
1357
+ "step": 1730
1358
+ },
1359
+ {
1360
+ "epoch": 3.7662337662337664,
1361
+ "grad_norm": 0.3582036793231964,
1362
+ "learning_rate": 5.158371040723983e-05,
1363
+ "loss": 0.1124,
1364
+ "step": 1740
1365
+ },
1366
+ {
1367
+ "epoch": 3.787878787878788,
1368
+ "grad_norm": 0.31167203187942505,
1369
+ "learning_rate": 5.067873303167421e-05,
1370
+ "loss": 0.1179,
1371
+ "step": 1750
1372
+ },
1373
+ {
1374
+ "epoch": 3.8095238095238093,
1375
+ "grad_norm": 0.391791969537735,
1376
+ "learning_rate": 4.97737556561086e-05,
1377
+ "loss": 0.127,
1378
+ "step": 1760
1379
+ },
1380
+ {
1381
+ "epoch": 3.8311688311688314,
1382
+ "grad_norm": 0.3683635890483856,
1383
+ "learning_rate": 4.8868778280542986e-05,
1384
+ "loss": 0.1129,
1385
+ "step": 1770
1386
+ },
1387
+ {
1388
+ "epoch": 3.8528138528138527,
1389
+ "grad_norm": 0.3955051302909851,
1390
+ "learning_rate": 4.7963800904977377e-05,
1391
+ "loss": 0.125,
1392
+ "step": 1780
1393
+ },
1394
+ {
1395
+ "epoch": 3.8744588744588744,
1396
+ "grad_norm": 0.40321120619773865,
1397
+ "learning_rate": 4.705882352941177e-05,
1398
+ "loss": 0.1272,
1399
+ "step": 1790
1400
+ },
1401
+ {
1402
+ "epoch": 3.896103896103896,
1403
+ "grad_norm": 0.31911927461624146,
1404
+ "learning_rate": 4.615384615384616e-05,
1405
+ "loss": 0.1072,
1406
+ "step": 1800
1407
+ },
1408
+ {
1409
+ "epoch": 3.896103896103896,
1410
+ "eval_loss": 0.10081314295530319,
1411
+ "eval_runtime": 21.9055,
1412
+ "eval_samples_per_second": 22.825,
1413
+ "eval_steps_per_second": 0.73,
1414
+ "step": 1800
1415
+ },
1416
+ {
1417
+ "epoch": 3.9177489177489178,
1418
+ "grad_norm": 0.4627375900745392,
1419
+ "learning_rate": 4.524886877828054e-05,
1420
+ "loss": 0.1238,
1421
+ "step": 1810
1422
+ },
1423
+ {
1424
+ "epoch": 3.9393939393939394,
1425
+ "grad_norm": 0.43323320150375366,
1426
+ "learning_rate": 4.434389140271493e-05,
1427
+ "loss": 0.1202,
1428
+ "step": 1820
1429
+ },
1430
+ {
1431
+ "epoch": 3.961038961038961,
1432
+ "grad_norm": 0.4214964807033539,
1433
+ "learning_rate": 4.3438914027149324e-05,
1434
+ "loss": 0.1186,
1435
+ "step": 1830
1436
+ },
1437
+ {
1438
+ "epoch": 3.982683982683983,
1439
+ "grad_norm": 0.302083283662796,
1440
+ "learning_rate": 4.2533936651583714e-05,
1441
+ "loss": 0.1226,
1442
+ "step": 1840
1443
+ },
1444
+ {
1445
+ "epoch": 4.004329004329004,
1446
+ "grad_norm": 0.39333033561706543,
1447
+ "learning_rate": 4.1628959276018105e-05,
1448
+ "loss": 0.1249,
1449
+ "step": 1850
1450
+ },
1451
+ {
1452
+ "epoch": 4.025974025974026,
1453
+ "grad_norm": 0.34783726930618286,
1454
+ "learning_rate": 4.072398190045249e-05,
1455
+ "loss": 0.1135,
1456
+ "step": 1860
1457
+ },
1458
+ {
1459
+ "epoch": 4.0476190476190474,
1460
+ "grad_norm": 0.3140253722667694,
1461
+ "learning_rate": 3.981900452488688e-05,
1462
+ "loss": 0.1095,
1463
+ "step": 1870
1464
+ },
1465
+ {
1466
+ "epoch": 4.06926406926407,
1467
+ "grad_norm": 0.3263933062553406,
1468
+ "learning_rate": 3.891402714932127e-05,
1469
+ "loss": 0.1136,
1470
+ "step": 1880
1471
+ },
1472
+ {
1473
+ "epoch": 4.090909090909091,
1474
+ "grad_norm": 0.4250706434249878,
1475
+ "learning_rate": 3.8009049773755655e-05,
1476
+ "loss": 0.1056,
1477
+ "step": 1890
1478
+ },
1479
+ {
1480
+ "epoch": 4.112554112554113,
1481
+ "grad_norm": 0.2250766158103943,
1482
+ "learning_rate": 3.7104072398190046e-05,
1483
+ "loss": 0.1079,
1484
+ "step": 1900
1485
+ },
1486
+ {
1487
+ "epoch": 4.112554112554113,
1488
+ "eval_loss": 0.10422435402870178,
1489
+ "eval_runtime": 22.3048,
1490
+ "eval_samples_per_second": 22.417,
1491
+ "eval_steps_per_second": 0.717,
1492
+ "step": 1900
1493
+ },
1494
+ {
1495
+ "epoch": 4.134199134199134,
1496
+ "grad_norm": 0.35859718918800354,
1497
+ "learning_rate": 3.6199095022624436e-05,
1498
+ "loss": 0.1048,
1499
+ "step": 1910
1500
+ },
1501
+ {
1502
+ "epoch": 4.1558441558441555,
1503
+ "grad_norm": 0.2876388728618622,
1504
+ "learning_rate": 3.529411764705883e-05,
1505
+ "loss": 0.1109,
1506
+ "step": 1920
1507
+ },
1508
+ {
1509
+ "epoch": 4.177489177489178,
1510
+ "grad_norm": 0.2952074408531189,
1511
+ "learning_rate": 3.438914027149321e-05,
1512
+ "loss": 0.1118,
1513
+ "step": 1930
1514
+ },
1515
+ {
1516
+ "epoch": 4.199134199134199,
1517
+ "grad_norm": 0.38420605659484863,
1518
+ "learning_rate": 3.34841628959276e-05,
1519
+ "loss": 0.1113,
1520
+ "step": 1940
1521
+ },
1522
+ {
1523
+ "epoch": 4.220779220779221,
1524
+ "grad_norm": 0.35064896941185,
1525
+ "learning_rate": 3.257918552036199e-05,
1526
+ "loss": 0.108,
1527
+ "step": 1950
1528
+ },
1529
+ {
1530
+ "epoch": 4.242424242424242,
1531
+ "grad_norm": 0.3417244553565979,
1532
+ "learning_rate": 3.167420814479638e-05,
1533
+ "loss": 0.1067,
1534
+ "step": 1960
1535
+ },
1536
+ {
1537
+ "epoch": 4.264069264069264,
1538
+ "grad_norm": 0.2506988048553467,
1539
+ "learning_rate": 3.0769230769230774e-05,
1540
+ "loss": 0.116,
1541
+ "step": 1970
1542
+ },
1543
+ {
1544
+ "epoch": 4.285714285714286,
1545
+ "grad_norm": 0.40218839049339294,
1546
+ "learning_rate": 2.986425339366516e-05,
1547
+ "loss": 0.111,
1548
+ "step": 1980
1549
+ },
1550
+ {
1551
+ "epoch": 4.307359307359308,
1552
+ "grad_norm": 0.33777332305908203,
1553
+ "learning_rate": 2.8959276018099553e-05,
1554
+ "loss": 0.1081,
1555
+ "step": 1990
1556
+ },
1557
+ {
1558
+ "epoch": 4.329004329004329,
1559
+ "grad_norm": 0.2849682569503784,
1560
+ "learning_rate": 2.805429864253394e-05,
1561
+ "loss": 0.1043,
1562
+ "step": 2000
1563
+ },
1564
+ {
1565
+ "epoch": 4.329004329004329,
1566
+ "eval_loss": 0.10182041674852371,
1567
+ "eval_runtime": 32.5102,
1568
+ "eval_samples_per_second": 15.38,
1569
+ "eval_steps_per_second": 0.492,
1570
+ "step": 2000
1571
+ },
1572
+ {
1573
+ "epoch": 4.35064935064935,
1574
+ "grad_norm": 0.32567378878593445,
1575
+ "learning_rate": 2.7149321266968324e-05,
1576
+ "loss": 0.1065,
1577
+ "step": 2010
1578
+ },
1579
+ {
1580
+ "epoch": 4.372294372294372,
1581
+ "grad_norm": 0.35031840205192566,
1582
+ "learning_rate": 2.6244343891402718e-05,
1583
+ "loss": 0.1133,
1584
+ "step": 2020
1585
+ },
1586
+ {
1587
+ "epoch": 4.393939393939394,
1588
+ "grad_norm": 0.3233943581581116,
1589
+ "learning_rate": 2.5339366515837106e-05,
1590
+ "loss": 0.1034,
1591
+ "step": 2030
1592
+ },
1593
+ {
1594
+ "epoch": 4.415584415584416,
1595
+ "grad_norm": 0.326164573431015,
1596
+ "learning_rate": 2.4434389140271493e-05,
1597
+ "loss": 0.1053,
1598
+ "step": 2040
1599
+ },
1600
+ {
1601
+ "epoch": 4.437229437229437,
1602
+ "grad_norm": 0.3046077489852905,
1603
+ "learning_rate": 2.3529411764705884e-05,
1604
+ "loss": 0.1034,
1605
+ "step": 2050
1606
+ },
1607
+ {
1608
+ "epoch": 4.458874458874459,
1609
+ "grad_norm": 0.3930221498012543,
1610
+ "learning_rate": 2.262443438914027e-05,
1611
+ "loss": 0.1132,
1612
+ "step": 2060
1613
+ },
1614
+ {
1615
+ "epoch": 4.48051948051948,
1616
+ "grad_norm": 0.4203428626060486,
1617
+ "learning_rate": 2.1719457013574662e-05,
1618
+ "loss": 0.1123,
1619
+ "step": 2070
1620
+ },
1621
+ {
1622
+ "epoch": 4.5021645021645025,
1623
+ "grad_norm": 0.23356233537197113,
1624
+ "learning_rate": 2.0814479638009053e-05,
1625
+ "loss": 0.1158,
1626
+ "step": 2080
1627
+ },
1628
+ {
1629
+ "epoch": 4.523809523809524,
1630
+ "grad_norm": 0.3921778202056885,
1631
+ "learning_rate": 1.990950226244344e-05,
1632
+ "loss": 0.1017,
1633
+ "step": 2090
1634
+ },
1635
+ {
1636
+ "epoch": 4.545454545454545,
1637
+ "grad_norm": 0.41227224469184875,
1638
+ "learning_rate": 1.9004524886877827e-05,
1639
+ "loss": 0.1095,
1640
+ "step": 2100
1641
+ },
1642
+ {
1643
+ "epoch": 4.545454545454545,
1644
+ "eval_loss": 0.10190469026565552,
1645
+ "eval_runtime": 22.5368,
1646
+ "eval_samples_per_second": 22.186,
1647
+ "eval_steps_per_second": 0.71,
1648
+ "step": 2100
1649
+ },
1650
+ {
1651
+ "epoch": 4.567099567099567,
1652
+ "grad_norm": 0.46910232305526733,
1653
+ "learning_rate": 1.8099547511312218e-05,
1654
+ "loss": 0.1041,
1655
+ "step": 2110
1656
+ },
1657
+ {
1658
+ "epoch": 4.588744588744589,
1659
+ "grad_norm": 0.2650741934776306,
1660
+ "learning_rate": 1.7194570135746606e-05,
1661
+ "loss": 0.1096,
1662
+ "step": 2120
1663
+ },
1664
+ {
1665
+ "epoch": 4.6103896103896105,
1666
+ "grad_norm": 0.30446478724479675,
1667
+ "learning_rate": 1.6289592760180996e-05,
1668
+ "loss": 0.11,
1669
+ "step": 2130
1670
+ },
1671
+ {
1672
+ "epoch": 4.632034632034632,
1673
+ "grad_norm": 0.30164214968681335,
1674
+ "learning_rate": 1.5384615384615387e-05,
1675
+ "loss": 0.1009,
1676
+ "step": 2140
1677
+ },
1678
+ {
1679
+ "epoch": 4.653679653679654,
1680
+ "grad_norm": 0.33579009771347046,
1681
+ "learning_rate": 1.4479638009049776e-05,
1682
+ "loss": 0.116,
1683
+ "step": 2150
1684
+ },
1685
+ {
1686
+ "epoch": 4.675324675324675,
1687
+ "grad_norm": 0.2805331349372864,
1688
+ "learning_rate": 1.3574660633484162e-05,
1689
+ "loss": 0.1154,
1690
+ "step": 2160
1691
+ },
1692
+ {
1693
+ "epoch": 4.696969696969697,
1694
+ "grad_norm": 0.2765107750892639,
1695
+ "learning_rate": 1.2669683257918553e-05,
1696
+ "loss": 0.1124,
1697
+ "step": 2170
1698
+ },
1699
+ {
1700
+ "epoch": 4.7186147186147185,
1701
+ "grad_norm": 0.39715567231178284,
1702
+ "learning_rate": 1.1764705882352942e-05,
1703
+ "loss": 0.1078,
1704
+ "step": 2180
1705
+ },
1706
+ {
1707
+ "epoch": 4.740259740259741,
1708
+ "grad_norm": 0.4515060782432556,
1709
+ "learning_rate": 1.0859728506787331e-05,
1710
+ "loss": 0.1135,
1711
+ "step": 2190
1712
+ },
1713
+ {
1714
+ "epoch": 4.761904761904762,
1715
+ "grad_norm": 0.3021312654018402,
1716
+ "learning_rate": 9.95475113122172e-06,
1717
+ "loss": 0.1069,
1718
+ "step": 2200
1719
+ },
1720
+ {
1721
+ "epoch": 4.761904761904762,
1722
+ "eval_loss": 0.10030877590179443,
1723
+ "eval_runtime": 22.0777,
1724
+ "eval_samples_per_second": 22.647,
1725
+ "eval_steps_per_second": 0.725,
1726
+ "step": 2200
1727
+ },
1728
+ {
1729
+ "epoch": 4.783549783549784,
1730
+ "grad_norm": 0.41326892375946045,
1731
+ "learning_rate": 9.049773755656109e-06,
1732
+ "loss": 0.1131,
1733
+ "step": 2210
1734
+ },
1735
+ {
1736
+ "epoch": 4.805194805194805,
1737
+ "grad_norm": 0.3018375039100647,
1738
+ "learning_rate": 8.144796380090498e-06,
1739
+ "loss": 0.1064,
1740
+ "step": 2220
1741
+ },
1742
+ {
1743
+ "epoch": 4.8268398268398265,
1744
+ "grad_norm": 0.3863151967525482,
1745
+ "learning_rate": 7.239819004524888e-06,
1746
+ "loss": 0.1187,
1747
+ "step": 2230
1748
+ },
1749
+ {
1750
+ "epoch": 4.848484848484849,
1751
+ "grad_norm": 0.47006744146347046,
1752
+ "learning_rate": 6.334841628959276e-06,
1753
+ "loss": 0.1073,
1754
+ "step": 2240
1755
+ },
1756
+ {
1757
+ "epoch": 4.87012987012987,
1758
+ "grad_norm": 0.36669015884399414,
1759
+ "learning_rate": 5.4298642533936655e-06,
1760
+ "loss": 0.1098,
1761
+ "step": 2250
1762
+ },
1763
+ {
1764
+ "epoch": 4.891774891774892,
1765
+ "grad_norm": 0.3454284965991974,
1766
+ "learning_rate": 4.5248868778280546e-06,
1767
+ "loss": 0.0987,
1768
+ "step": 2260
1769
+ },
1770
+ {
1771
+ "epoch": 4.913419913419913,
1772
+ "grad_norm": 0.45213282108306885,
1773
+ "learning_rate": 3.619909502262444e-06,
1774
+ "loss": 0.1094,
1775
+ "step": 2270
1776
+ },
1777
+ {
1778
+ "epoch": 4.935064935064935,
1779
+ "grad_norm": 0.3391339182853699,
1780
+ "learning_rate": 2.7149321266968327e-06,
1781
+ "loss": 0.1011,
1782
+ "step": 2280
1783
+ },
1784
+ {
1785
+ "epoch": 4.956709956709957,
1786
+ "grad_norm": 0.3675156235694885,
1787
+ "learning_rate": 1.809954751131222e-06,
1788
+ "loss": 0.1143,
1789
+ "step": 2290
1790
+ },
1791
+ {
1792
+ "epoch": 4.978354978354979,
1793
+ "grad_norm": 0.3254551589488983,
1794
+ "learning_rate": 9.04977375565611e-07,
1795
+ "loss": 0.1123,
1796
+ "step": 2300
1797
+ },
1798
+ {
1799
+ "epoch": 4.978354978354979,
1800
+ "eval_loss": 0.09990464895963669,
1801
+ "eval_runtime": 21.2785,
1802
+ "eval_samples_per_second": 23.498,
1803
+ "eval_steps_per_second": 0.752,
1804
+ "step": 2300
1805
+ },
1806
+ {
1807
+ "epoch": 5.0,
1808
+ "grad_norm": 0.34439313411712646,
1809
+ "learning_rate": 0.0,
1810
+ "loss": 0.1115,
1811
+ "step": 2310
1812
+ }
1813
+ ],
1814
+ "logging_steps": 10,
1815
+ "max_steps": 2310,
1816
+ "num_input_tokens_seen": 0,
1817
+ "num_train_epochs": 5,
1818
+ "save_steps": 500,
1819
+ "stateful_callbacks": {
1820
+ "TrainerControl": {
1821
+ "args": {
1822
+ "should_epoch_stop": false,
1823
+ "should_evaluate": false,
1824
+ "should_log": false,
1825
+ "should_save": true,
1826
+ "should_training_stop": true
1827
+ },
1828
+ "attributes": {}
1829
+ }
1830
+ },
1831
+ "total_flos": 7.35957960819826e+18,
1832
+ "train_batch_size": 256,
1833
+ "trial_name": null,
1834
+ "trial_params": null
1835
+ }
checkpoint-2310/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:643e95e5ac406cc2ed73fee78c57d46adfe11ecc231393466b4f17abf1f17fbb
3
+ size 5368
git_hash.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 258a8d9a4ce209476594fb23c349a485eb5fa068
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 802816,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "ColQwen2Processor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 802816,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
results.json ADDED
@@ -0,0 +1,588 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "timestamp": "2025-04-07T13:42:49.983941",
4
+ "vidore_benchmark_version": "5.0.1.dev6+g9e0da63"
5
+ },
6
+ "metrics": {
7
+ "./data_dir/eval_vidore/syntheticDocQA_artificial_intelligence_test": {
8
+ "ndcg_at_1": 1.0,
9
+ "ndcg_at_3": 1.0,
10
+ "ndcg_at_5": 1.0,
11
+ "ndcg_at_10": 1.0,
12
+ "ndcg_at_20": 1.0,
13
+ "ndcg_at_50": 1.0,
14
+ "ndcg_at_100": 1.0,
15
+ "map_at_1": 1.0,
16
+ "map_at_3": 1.0,
17
+ "map_at_5": 1.0,
18
+ "map_at_10": 1.0,
19
+ "map_at_20": 1.0,
20
+ "map_at_50": 1.0,
21
+ "map_at_100": 1.0,
22
+ "recall_at_1": 1.0,
23
+ "recall_at_3": 1.0,
24
+ "recall_at_5": 1.0,
25
+ "recall_at_10": 1.0,
26
+ "recall_at_20": 1.0,
27
+ "recall_at_50": 1.0,
28
+ "recall_at_100": 1.0,
29
+ "precision_at_1": 1.0,
30
+ "precision_at_3": 0.33333,
31
+ "precision_at_5": 0.2,
32
+ "precision_at_10": 0.1,
33
+ "precision_at_20": 0.05,
34
+ "precision_at_50": 0.02,
35
+ "precision_at_100": 0.01,
36
+ "mrr_at_1": 1.0,
37
+ "mrr_at_3": 1.0,
38
+ "mrr_at_5": 1.0,
39
+ "mrr_at_10": 1.0,
40
+ "mrr_at_20": 1.0,
41
+ "mrr_at_50": 1.0,
42
+ "mrr_at_100": 1.0,
43
+ "naucs_at_1_max": null,
44
+ "naucs_at_1_std": null,
45
+ "naucs_at_1_diff1": null,
46
+ "naucs_at_3_max": 1.0,
47
+ "naucs_at_3_std": 1.0,
48
+ "naucs_at_3_diff1": 1.0,
49
+ "naucs_at_5_max": 1.0,
50
+ "naucs_at_5_std": 1.0,
51
+ "naucs_at_5_diff1": 1.0,
52
+ "naucs_at_10_max": 1.0,
53
+ "naucs_at_10_std": 1.0,
54
+ "naucs_at_10_diff1": 1.0,
55
+ "naucs_at_20_max": 1.0,
56
+ "naucs_at_20_std": 1.0,
57
+ "naucs_at_20_diff1": 1.0,
58
+ "naucs_at_50_max": null,
59
+ "naucs_at_50_std": null,
60
+ "naucs_at_50_diff1": null,
61
+ "naucs_at_100_max": null,
62
+ "naucs_at_100_std": null,
63
+ "naucs_at_100_diff1": null
64
+ },
65
+ "./data_dir/eval_vidore/syntheticDocQA_energy_test": {
66
+ "ndcg_at_1": 0.96,
67
+ "ndcg_at_3": 0.96631,
68
+ "ndcg_at_5": 0.97062,
69
+ "ndcg_at_10": 0.97062,
70
+ "ndcg_at_20": 0.97602,
71
+ "ndcg_at_50": 0.97602,
72
+ "ndcg_at_100": 0.97602,
73
+ "map_at_1": 0.96,
74
+ "map_at_3": 0.965,
75
+ "map_at_5": 0.9675,
76
+ "map_at_10": 0.9675,
77
+ "map_at_20": 0.96917,
78
+ "map_at_50": 0.96917,
79
+ "map_at_100": 0.96917,
80
+ "recall_at_1": 0.96,
81
+ "recall_at_3": 0.97,
82
+ "recall_at_5": 0.98,
83
+ "recall_at_10": 0.98,
84
+ "recall_at_20": 1.0,
85
+ "recall_at_50": 1.0,
86
+ "recall_at_100": 1.0,
87
+ "precision_at_1": 0.96,
88
+ "precision_at_3": 0.32333,
89
+ "precision_at_5": 0.196,
90
+ "precision_at_10": 0.098,
91
+ "precision_at_20": 0.05,
92
+ "precision_at_50": 0.02,
93
+ "precision_at_100": 0.01,
94
+ "mrr_at_1": 0.96,
95
+ "mrr_at_3": 0.965,
96
+ "mrr_at_5": 0.9675,
97
+ "mrr_at_10": 0.9675,
98
+ "mrr_at_20": 0.9693181818181819,
99
+ "mrr_at_50": 0.9693181818181819,
100
+ "mrr_at_100": 0.9693181818181819,
101
+ "naucs_at_1_max": 0.7700746965452845,
102
+ "naucs_at_1_std": -0.8232959850606876,
103
+ "naucs_at_1_diff1": 0.96732026143791,
104
+ "naucs_at_3_max": 0.7860255213196378,
105
+ "naucs_at_3_std": -1.21708683473389,
106
+ "naucs_at_3_diff1": 1.0,
107
+ "naucs_at_5_max": 0.6790382819794609,
108
+ "naucs_at_5_std": -1.7399626517273414,
109
+ "naucs_at_5_diff1": 1.0,
110
+ "naucs_at_10_max": 0.6790382819794609,
111
+ "naucs_at_10_std": -1.7399626517273414,
112
+ "naucs_at_10_diff1": 1.0,
113
+ "naucs_at_20_max": 1.0,
114
+ "naucs_at_20_std": 1.0,
115
+ "naucs_at_20_diff1": 1.0,
116
+ "naucs_at_50_max": null,
117
+ "naucs_at_50_std": null,
118
+ "naucs_at_50_diff1": null,
119
+ "naucs_at_100_max": null,
120
+ "naucs_at_100_std": null,
121
+ "naucs_at_100_diff1": null
122
+ },
123
+ "./data_dir/eval_vidore/tatdqa_test": {
124
+ "ndcg_at_1": 0.70352,
125
+ "ndcg_at_3": 0.79986,
126
+ "ndcg_at_5": 0.81641,
127
+ "ndcg_at_10": 0.83016,
128
+ "ndcg_at_20": 0.83437,
129
+ "ndcg_at_50": 0.8377,
130
+ "ndcg_at_100": 0.83916,
131
+ "map_at_1": 0.70352,
132
+ "map_at_3": 0.77643,
133
+ "map_at_5": 0.78578,
134
+ "map_at_10": 0.79157,
135
+ "map_at_20": 0.79277,
136
+ "map_at_50": 0.79328,
137
+ "map_at_100": 0.7934,
138
+ "recall_at_1": 0.70352,
139
+ "recall_at_3": 0.86756,
140
+ "recall_at_5": 0.90705,
141
+ "recall_at_10": 0.94897,
142
+ "recall_at_20": 0.96537,
143
+ "recall_at_50": 0.98238,
144
+ "recall_at_100": 0.99149,
145
+ "precision_at_1": 0.70352,
146
+ "precision_at_3": 0.28919,
147
+ "precision_at_5": 0.18141,
148
+ "precision_at_10": 0.0949,
149
+ "precision_at_20": 0.04827,
150
+ "precision_at_50": 0.01965,
151
+ "precision_at_100": 0.00991,
152
+ "mrr_at_1": 0.7004860267314702,
153
+ "mrr_at_3": 0.7765289590927501,
154
+ "mrr_at_5": 0.7844268934791414,
155
+ "mrr_at_10": 0.790128787440452,
156
+ "mrr_at_20": 0.7913423674323303,
157
+ "mrr_at_50": 0.7919207273733465,
158
+ "mrr_at_100": 0.792037412007671,
159
+ "naucs_at_1_max": 0.30712069371146206,
160
+ "naucs_at_1_std": -0.14877076174901377,
161
+ "naucs_at_1_diff1": 0.8349485938382216,
162
+ "naucs_at_3_max": 0.3678958030568473,
163
+ "naucs_at_3_std": -0.02507864846676702,
164
+ "naucs_at_3_diff1": 0.7517064585275754,
165
+ "naucs_at_5_max": 0.44253146077029726,
166
+ "naucs_at_5_std": 0.11026281660700264,
167
+ "naucs_at_5_diff1": 0.7300454594518606,
168
+ "naucs_at_10_max": 0.5290095815470773,
169
+ "naucs_at_10_std": 0.33727621290447424,
170
+ "naucs_at_10_diff1": 0.665454536221219,
171
+ "naucs_at_20_max": 0.5525939398718661,
172
+ "naucs_at_20_std": 0.44184740259085264,
173
+ "naucs_at_20_diff1": 0.6237746503620547,
174
+ "naucs_at_50_max": 0.6332654079181073,
175
+ "naucs_at_50_std": 0.5148901808157141,
176
+ "naucs_at_50_diff1": 0.7220173231390383,
177
+ "naucs_at_100_max": 0.7592562052200388,
178
+ "naucs_at_100_std": 0.6908846813166498,
179
+ "naucs_at_100_diff1": 0.7670992011544225
180
+ },
181
+ "./data_dir/eval_vidore/shiftproject_test": {
182
+ "ndcg_at_1": 0.77,
183
+ "ndcg_at_3": 0.87702,
184
+ "ndcg_at_5": 0.8895,
185
+ "ndcg_at_10": 0.8895,
186
+ "ndcg_at_20": 0.8895,
187
+ "ndcg_at_50": 0.89367,
188
+ "ndcg_at_100": 0.89367,
189
+ "map_at_1": 0.77,
190
+ "map_at_3": 0.85167,
191
+ "map_at_5": 0.85867,
192
+ "map_at_10": 0.85867,
193
+ "map_at_20": 0.85867,
194
+ "map_at_50": 0.85942,
195
+ "map_at_100": 0.85942,
196
+ "recall_at_1": 0.77,
197
+ "recall_at_3": 0.95,
198
+ "recall_at_5": 0.98,
199
+ "recall_at_10": 0.98,
200
+ "recall_at_20": 0.98,
201
+ "recall_at_50": 1.0,
202
+ "recall_at_100": 1.0,
203
+ "precision_at_1": 0.77,
204
+ "precision_at_3": 0.31667,
205
+ "precision_at_5": 0.196,
206
+ "precision_at_10": 0.098,
207
+ "precision_at_20": 0.049,
208
+ "precision_at_50": 0.02,
209
+ "precision_at_100": 0.01,
210
+ "mrr_at_1": 0.77,
211
+ "mrr_at_3": 0.8516666666666667,
212
+ "mrr_at_5": 0.8586666666666666,
213
+ "mrr_at_10": 0.8586666666666666,
214
+ "mrr_at_20": 0.8586666666666666,
215
+ "mrr_at_50": 0.8594585921325052,
216
+ "mrr_at_100": 0.8594585921325052,
217
+ "naucs_at_1_max": -0.027170385622524204,
218
+ "naucs_at_1_std": -0.41825384391575815,
219
+ "naucs_at_1_diff1": 0.7566527159195185,
220
+ "naucs_at_3_max": -0.22203548085900757,
221
+ "naucs_at_3_std": -0.38478057889822304,
222
+ "naucs_at_3_diff1": 0.7399626517273589,
223
+ "naucs_at_5_max": -0.43534080298785716,
224
+ "naucs_at_5_std": -0.5088702147525547,
225
+ "naucs_at_5_diff1": 0.9346405228758136,
226
+ "naucs_at_10_max": -0.43534080298785716,
227
+ "naucs_at_10_std": -0.5088702147525547,
228
+ "naucs_at_10_diff1": 0.9346405228758136,
229
+ "naucs_at_20_max": -0.43534080298785716,
230
+ "naucs_at_20_std": -0.5088702147525547,
231
+ "naucs_at_20_diff1": 0.9346405228758136,
232
+ "naucs_at_50_max": null,
233
+ "naucs_at_50_std": null,
234
+ "naucs_at_50_diff1": null,
235
+ "naucs_at_100_max": null,
236
+ "naucs_at_100_std": null,
237
+ "naucs_at_100_diff1": null
238
+ },
239
+ "./data_dir/eval_vidore/syntheticDocQA_healthcare_industry_test": {
240
+ "ndcg_at_1": 0.97,
241
+ "ndcg_at_3": 0.98893,
242
+ "ndcg_at_5": 0.98893,
243
+ "ndcg_at_10": 0.98893,
244
+ "ndcg_at_20": 0.98893,
245
+ "ndcg_at_50": 0.98893,
246
+ "ndcg_at_100": 0.98893,
247
+ "map_at_1": 0.97,
248
+ "map_at_3": 0.985,
249
+ "map_at_5": 0.985,
250
+ "map_at_10": 0.985,
251
+ "map_at_20": 0.985,
252
+ "map_at_50": 0.985,
253
+ "map_at_100": 0.985,
254
+ "recall_at_1": 0.97,
255
+ "recall_at_3": 1.0,
256
+ "recall_at_5": 1.0,
257
+ "recall_at_10": 1.0,
258
+ "recall_at_20": 1.0,
259
+ "recall_at_50": 1.0,
260
+ "recall_at_100": 1.0,
261
+ "precision_at_1": 0.97,
262
+ "precision_at_3": 0.33333,
263
+ "precision_at_5": 0.2,
264
+ "precision_at_10": 0.1,
265
+ "precision_at_20": 0.05,
266
+ "precision_at_50": 0.02,
267
+ "precision_at_100": 0.01,
268
+ "mrr_at_1": 0.98,
269
+ "mrr_at_3": 0.99,
270
+ "mrr_at_5": 0.99,
271
+ "mrr_at_10": 0.99,
272
+ "mrr_at_20": 0.99,
273
+ "mrr_at_50": 0.99,
274
+ "mrr_at_100": 0.99,
275
+ "naucs_at_1_max": 0.8078120136943662,
276
+ "naucs_at_1_std": -0.10597572362278272,
277
+ "naucs_at_1_diff1": 0.9564270152505465,
278
+ "naucs_at_3_max": 1.0,
279
+ "naucs_at_3_std": 1.0,
280
+ "naucs_at_3_diff1": 1.0,
281
+ "naucs_at_5_max": 1.0,
282
+ "naucs_at_5_std": 1.0,
283
+ "naucs_at_5_diff1": 1.0,
284
+ "naucs_at_10_max": 1.0,
285
+ "naucs_at_10_std": 1.0,
286
+ "naucs_at_10_diff1": 1.0,
287
+ "naucs_at_20_max": 1.0,
288
+ "naucs_at_20_std": 1.0,
289
+ "naucs_at_20_diff1": 1.0,
290
+ "naucs_at_50_max": null,
291
+ "naucs_at_50_std": null,
292
+ "naucs_at_50_diff1": null,
293
+ "naucs_at_100_max": null,
294
+ "naucs_at_100_std": null,
295
+ "naucs_at_100_diff1": null
296
+ },
297
+ "./data_dir/eval_vidore/syntheticDocQA_government_reports_test": {
298
+ "ndcg_at_1": 0.94,
299
+ "ndcg_at_3": 0.96524,
300
+ "ndcg_at_5": 0.97385,
301
+ "ndcg_at_10": 0.97385,
302
+ "ndcg_at_20": 0.97385,
303
+ "ndcg_at_50": 0.97385,
304
+ "ndcg_at_100": 0.97385,
305
+ "map_at_1": 0.94,
306
+ "map_at_3": 0.96,
307
+ "map_at_5": 0.965,
308
+ "map_at_10": 0.965,
309
+ "map_at_20": 0.965,
310
+ "map_at_50": 0.965,
311
+ "map_at_100": 0.965,
312
+ "recall_at_1": 0.94,
313
+ "recall_at_3": 0.98,
314
+ "recall_at_5": 1.0,
315
+ "recall_at_10": 1.0,
316
+ "recall_at_20": 1.0,
317
+ "recall_at_50": 1.0,
318
+ "recall_at_100": 1.0,
319
+ "precision_at_1": 0.94,
320
+ "precision_at_3": 0.32667,
321
+ "precision_at_5": 0.2,
322
+ "precision_at_10": 0.1,
323
+ "precision_at_20": 0.05,
324
+ "precision_at_50": 0.02,
325
+ "precision_at_100": 0.01,
326
+ "mrr_at_1": 0.95,
327
+ "mrr_at_3": 0.965,
328
+ "mrr_at_5": 0.97,
329
+ "mrr_at_10": 0.97,
330
+ "mrr_at_20": 0.97,
331
+ "mrr_at_50": 0.97,
332
+ "mrr_at_100": 0.97,
333
+ "naucs_at_1_max": 0.7857142857142844,
334
+ "naucs_at_1_std": 0.5056022408963584,
335
+ "naucs_at_1_diff1": 0.9319172113289763,
336
+ "naucs_at_3_max": 0.8611111111111119,
337
+ "naucs_at_3_std": 0.5401493930905577,
338
+ "naucs_at_3_diff1": 1.0,
339
+ "naucs_at_5_max": 1.0,
340
+ "naucs_at_5_std": 1.0,
341
+ "naucs_at_5_diff1": 1.0,
342
+ "naucs_at_10_max": 1.0,
343
+ "naucs_at_10_std": 1.0,
344
+ "naucs_at_10_diff1": 1.0,
345
+ "naucs_at_20_max": 1.0,
346
+ "naucs_at_20_std": 1.0,
347
+ "naucs_at_20_diff1": 1.0,
348
+ "naucs_at_50_max": null,
349
+ "naucs_at_50_std": null,
350
+ "naucs_at_50_diff1": null,
351
+ "naucs_at_100_max": null,
352
+ "naucs_at_100_std": null,
353
+ "naucs_at_100_diff1": null
354
+ },
355
+ "./data_dir/eval_vidore/docvqa_test_subsampled": {
356
+ "ndcg_at_1": 0.54767,
357
+ "ndcg_at_3": 0.60458,
358
+ "ndcg_at_5": 0.62758,
359
+ "ndcg_at_10": 0.64623,
360
+ "ndcg_at_20": 0.65727,
361
+ "ndcg_at_50": 0.66313,
362
+ "ndcg_at_100": 0.66931,
363
+ "map_at_1": 0.54767,
364
+ "map_at_3": 0.59054,
365
+ "map_at_5": 0.6034,
366
+ "map_at_10": 0.6111,
367
+ "map_at_20": 0.61404,
368
+ "map_at_50": 0.61504,
369
+ "map_at_100": 0.6156,
370
+ "recall_at_1": 0.54767,
371
+ "recall_at_3": 0.64523,
372
+ "recall_at_5": 0.70067,
373
+ "recall_at_10": 0.75831,
374
+ "recall_at_20": 0.80266,
375
+ "recall_at_50": 0.83149,
376
+ "recall_at_100": 0.86918,
377
+ "precision_at_1": 0.54767,
378
+ "precision_at_3": 0.21508,
379
+ "precision_at_5": 0.14013,
380
+ "precision_at_10": 0.07583,
381
+ "precision_at_20": 0.04013,
382
+ "precision_at_50": 0.01663,
383
+ "precision_at_100": 0.00869,
384
+ "mrr_at_1": 0.549889135254989,
385
+ "mrr_at_3": 0.5916481892091647,
386
+ "mrr_at_5": 0.6031781226903179,
387
+ "mrr_at_10": 0.6112298947664802,
388
+ "mrr_at_20": 0.6144150798334311,
389
+ "mrr_at_50": 0.615365808840627,
390
+ "mrr_at_100": 0.6158082058718903,
391
+ "naucs_at_1_max": 0.26994818984174423,
392
+ "naucs_at_1_std": 0.5906240429505522,
393
+ "naucs_at_1_diff1": 0.9167196184748201,
394
+ "naucs_at_3_max": 0.23789664157644613,
395
+ "naucs_at_3_std": 0.7236619387134813,
396
+ "naucs_at_3_diff1": 0.8666053534752101,
397
+ "naucs_at_5_max": 0.11514001916616068,
398
+ "naucs_at_5_std": 0.7631042600804109,
399
+ "naucs_at_5_diff1": 0.8479060689502268,
400
+ "naucs_at_10_max": -0.043203523595493495,
401
+ "naucs_at_10_std": 0.862093103464622,
402
+ "naucs_at_10_diff1": 0.8564068404442808,
403
+ "naucs_at_20_max": -0.18212291788839394,
404
+ "naucs_at_20_std": 0.9249806242337382,
405
+ "naucs_at_20_diff1": 0.8845536894418387,
406
+ "naucs_at_50_max": -0.24037092450687947,
407
+ "naucs_at_50_std": 0.9368754047403369,
408
+ "naucs_at_50_diff1": 0.8812951566425166,
409
+ "naucs_at_100_max": -0.40683538353746845,
410
+ "naucs_at_100_std": 0.9294103270531832,
411
+ "naucs_at_100_diff1": 0.8702662400596464
412
+ },
413
+ "./data_dir/eval_vidore/infovqa_test_subsampled": {
414
+ "ndcg_at_1": 0.89069,
415
+ "ndcg_at_3": 0.91847,
416
+ "ndcg_at_5": 0.92536,
417
+ "ndcg_at_10": 0.92807,
418
+ "ndcg_at_20": 0.93014,
419
+ "ndcg_at_50": 0.93334,
420
+ "ndcg_at_100": 0.93435,
421
+ "map_at_1": 0.89069,
422
+ "map_at_3": 0.91194,
423
+ "map_at_5": 0.91589,
424
+ "map_at_10": 0.91706,
425
+ "map_at_20": 0.91765,
426
+ "map_at_50": 0.91815,
427
+ "map_at_100": 0.91825,
428
+ "recall_at_1": 0.89069,
429
+ "recall_at_3": 0.93725,
430
+ "recall_at_5": 0.95344,
431
+ "recall_at_10": 0.96154,
432
+ "recall_at_20": 0.96964,
433
+ "recall_at_50": 0.98583,
434
+ "recall_at_100": 0.9919,
435
+ "precision_at_1": 0.89069,
436
+ "precision_at_3": 0.31242,
437
+ "precision_at_5": 0.19069,
438
+ "precision_at_10": 0.09615,
439
+ "precision_at_20": 0.04848,
440
+ "precision_at_50": 0.01972,
441
+ "precision_at_100": 0.00992,
442
+ "mrr_at_1": 0.8866396761133604,
443
+ "mrr_at_3": 0.9089068825910931,
444
+ "mrr_at_5": 0.9132591093117408,
445
+ "mrr_at_10": 0.9144640447272027,
446
+ "mrr_at_20": 0.9150498220615949,
447
+ "mrr_at_50": 0.9156121077361352,
448
+ "mrr_at_100": 0.9156733347422276,
449
+ "naucs_at_1_max": 0.6888031159871755,
450
+ "naucs_at_1_std": -0.008505670520150402,
451
+ "naucs_at_1_diff1": 0.9449011245519812,
452
+ "naucs_at_3_max": 0.7723774804158382,
453
+ "naucs_at_3_std": 0.004652604931807598,
454
+ "naucs_at_3_diff1": 0.923100327986361,
455
+ "naucs_at_5_max": 0.905123471497624,
456
+ "naucs_at_5_std": 0.3134960067202525,
457
+ "naucs_at_5_diff1": 0.9368196598112606,
458
+ "naucs_at_10_max": 0.9232252314824217,
459
+ "naucs_at_10_std": 0.3879086911094102,
460
+ "naucs_at_10_diff1": 0.9372660570415042,
461
+ "naucs_at_20_max": 0.9455551744236316,
462
+ "naucs_at_20_std": 0.44590016086873197,
463
+ "naucs_at_20_diff1": 0.9564661819784096,
464
+ "naucs_at_50_max": 0.9813426494193118,
465
+ "naucs_at_50_std": 0.7183015996994482,
466
+ "naucs_at_50_diff1": 0.9626852988386237,
467
+ "naucs_at_100_max": 1.0,
468
+ "naucs_at_100_std": 0.8979159520443043,
469
+ "naucs_at_100_diff1": 0.9673496364838197
470
+ },
471
+ "./data_dir/eval_vidore/arxivqa_test_subsampled": {
472
+ "ndcg_at_1": 0.822,
473
+ "ndcg_at_3": 0.86707,
474
+ "ndcg_at_5": 0.87533,
475
+ "ndcg_at_10": 0.88497,
476
+ "ndcg_at_20": 0.89022,
477
+ "ndcg_at_50": 0.8951,
478
+ "ndcg_at_100": 0.8951,
479
+ "map_at_1": 0.822,
480
+ "map_at_3": 0.85633,
481
+ "map_at_5": 0.86093,
482
+ "map_at_10": 0.86488,
483
+ "map_at_20": 0.86642,
484
+ "map_at_50": 0.86725,
485
+ "map_at_100": 0.86725,
486
+ "recall_at_1": 0.822,
487
+ "recall_at_3": 0.898,
488
+ "recall_at_5": 0.918,
489
+ "recall_at_10": 0.948,
490
+ "recall_at_20": 0.968,
491
+ "recall_at_50": 0.992,
492
+ "recall_at_100": 0.992,
493
+ "precision_at_1": 0.822,
494
+ "precision_at_3": 0.29933,
495
+ "precision_at_5": 0.1836,
496
+ "precision_at_10": 0.0948,
497
+ "precision_at_20": 0.0484,
498
+ "precision_at_50": 0.01984,
499
+ "precision_at_100": 0.00992,
500
+ "mrr_at_1": 0.824,
501
+ "mrr_at_3": 0.858,
502
+ "mrr_at_5": 0.8622000000000001,
503
+ "mrr_at_10": 0.8664793650793651,
504
+ "mrr_at_20": 0.8681266741428506,
505
+ "mrr_at_50": 0.8688783518847116,
506
+ "mrr_at_100": 0.8688783518847116,
507
+ "naucs_at_1_max": 0.7534804527092446,
508
+ "naucs_at_1_std": -0.09711881948385728,
509
+ "naucs_at_1_diff1": 0.950227578762283,
510
+ "naucs_at_3_max": 0.8118793707898164,
511
+ "naucs_at_3_std": 0.022246287696627846,
512
+ "naucs_at_3_diff1": 0.907169471925993,
513
+ "naucs_at_5_max": 0.7977955409806211,
514
+ "naucs_at_5_std": -0.04402086037667595,
515
+ "naucs_at_5_diff1": 0.921887454168659,
516
+ "naucs_at_10_max": 0.9135423400129307,
517
+ "naucs_at_10_std": 0.09272426919485754,
518
+ "naucs_at_10_diff1": 0.9340120663650082,
519
+ "naucs_at_20_max": 0.9210725957049468,
520
+ "naucs_at_20_std": 0.19062208216619833,
521
+ "naucs_at_20_diff1": 0.9264705882352913,
522
+ "naucs_at_50_max": 0.9673202614378978,
523
+ "naucs_at_50_std": 0.20354808590102869,
524
+ "naucs_at_50_diff1": 0.9346405228758211,
525
+ "naucs_at_100_max": 0.9673202614378978,
526
+ "naucs_at_100_std": 0.20354808590102869,
527
+ "naucs_at_100_diff1": 0.9346405228758211
528
+ },
529
+ "./data_dir/eval_vidore/tabfquad_test_subsampled": {
530
+ "ndcg_at_1": 0.84286,
531
+ "ndcg_at_3": 0.89141,
532
+ "ndcg_at_5": 0.89847,
533
+ "ndcg_at_10": 0.90417,
534
+ "ndcg_at_20": 0.91057,
535
+ "ndcg_at_50": 0.9134,
536
+ "ndcg_at_100": 0.9134,
537
+ "map_at_1": 0.84286,
538
+ "map_at_3": 0.87976,
539
+ "map_at_5": 0.88351,
540
+ "map_at_10": 0.88582,
541
+ "map_at_20": 0.88761,
542
+ "map_at_50": 0.88806,
543
+ "map_at_100": 0.88806,
544
+ "recall_at_1": 0.84286,
545
+ "recall_at_3": 0.925,
546
+ "recall_at_5": 0.94286,
547
+ "recall_at_10": 0.96071,
548
+ "recall_at_20": 0.98571,
549
+ "recall_at_50": 1.0,
550
+ "recall_at_100": 1.0,
551
+ "precision_at_1": 0.84286,
552
+ "precision_at_3": 0.30833,
553
+ "precision_at_5": 0.18857,
554
+ "precision_at_10": 0.09607,
555
+ "precision_at_20": 0.04929,
556
+ "precision_at_50": 0.02,
557
+ "precision_at_100": 0.01,
558
+ "mrr_at_1": 0.8428571428571429,
559
+ "mrr_at_3": 0.8797619047619047,
560
+ "mrr_at_5": 0.8827976190476191,
561
+ "mrr_at_10": 0.8856746031746031,
562
+ "mrr_at_20": 0.887474271759986,
563
+ "mrr_at_50": 0.8879308740437567,
564
+ "mrr_at_100": 0.8879308740437567,
565
+ "naucs_at_1_max": 0.5389336957490425,
566
+ "naucs_at_1_std": 0.2014303538009097,
567
+ "naucs_at_1_diff1": 0.8885014704571788,
568
+ "naucs_at_3_max": 0.6380329909741672,
569
+ "naucs_at_3_std": 0.4563603219065409,
570
+ "naucs_at_3_diff1": 0.8615223867324734,
571
+ "naucs_at_5_max": 0.5759803921568608,
572
+ "naucs_at_5_std": 0.40143557422968984,
573
+ "naucs_at_5_diff1": 0.8345880018674129,
574
+ "naucs_at_10_max": 0.823444529326883,
575
+ "naucs_at_10_std": 0.626602156013919,
576
+ "naucs_at_10_diff1": 0.8355827179356624,
577
+ "naucs_at_20_max": 0.967320261437913,
578
+ "naucs_at_20_std": 0.8284313725490264,
579
+ "naucs_at_20_diff1": 0.9346405228758147,
580
+ "naucs_at_50_max": 1.0,
581
+ "naucs_at_50_std": 1.0,
582
+ "naucs_at_50_diff1": 1.0,
583
+ "naucs_at_100_max": 1.0,
584
+ "naucs_at_100_std": 1.0,
585
+ "naucs_at_100_diff1": 1.0
586
+ }
587
+ }
588
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:091aa7594dc2fcfbfa06b9e3c22a5f0562ac14f30375c13af7309407a0e67b8a
3
+ size 11420371
tokenizer_config.json ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ }
116
+ },
117
+ "additional_special_tokens": [
118
+ "<|im_start|>",
119
+ "<|im_end|>",
120
+ "<|object_ref_start|>",
121
+ "<|object_ref_end|>",
122
+ "<|box_start|>",
123
+ "<|box_end|>",
124
+ "<|quad_start|>",
125
+ "<|quad_end|>",
126
+ "<|vision_start|>",
127
+ "<|vision_end|>",
128
+ "<|vision_pad|>",
129
+ "<|image_pad|>",
130
+ "<|video_pad|>"
131
+ ],
132
+ "bos_token": null,
133
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
134
+ "clean_up_tokenization_spaces": false,
135
+ "eos_token": "<|im_end|>",
136
+ "errors": "replace",
137
+ "extra_special_tokens": {},
138
+ "max_num_visual_tokens": 1024,
139
+ "model_max_length": 32768,
140
+ "pad_token": "<|endoftext|>",
141
+ "padding_side": "left",
142
+ "processor_class": "ColQwen2Processor",
143
+ "split_special_tokens": false,
144
+ "tokenizer_class": "Qwen2Tokenizer",
145
+ "unk_token": null
146
+ }
training_config.yml ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ config:
2
+ (): colpali_engine.trainer.colmodel_training.ColModelTrainingConfig
3
+ output_dir: !path ../../../models/colqwen2-ba256-3e-0304
4
+ processor:
5
+ (): colpali_engine.utils.transformers_wrappers.AllPurposeWrapper
6
+ class_to_instanciate: !ext colpali_engine.models.ColQwen2Processor
7
+ pretrained_model_name_or_path: "./models/base_models/colqwen2-base"
8
+ max_num_visual_tokens: 1024
9
+
10
+ model:
11
+ (): colpali_engine.utils.transformers_wrappers.AllPurposeWrapper
12
+ class_to_instanciate: !ext colpali_engine.models.ColQwen2
13
+ pretrained_model_name_or_path: "./models/base_models/colqwen2-base"
14
+ torch_dtype: !ext torch.bfloat16
15
+ use_cache: false
16
+ attn_implementation: "flash_attention_2"
17
+
18
+ dataset_loading_func: !ext colpali_engine.utils.dataset_transformation.load_train_set
19
+ eval_dataset_loader: !import ../data/test_data.yaml
20
+
21
+ # max_length: 50
22
+ run_eval: true
23
+ loss_func:
24
+ (): colpali_engine.loss.late_interaction_losses.ColbertPairwiseCELoss
25
+ tr_args:
26
+ (): transformers.training_args.TrainingArguments
27
+ output_dir: null
28
+ overwrite_output_dir: true
29
+ num_train_epochs: 5
30
+ per_device_train_batch_size: 64
31
+ gradient_checkpointing: true
32
+ gradient_checkpointing_kwargs: { "use_reentrant": false }
33
+ # 6 x 8 gpus = 48 batch size
34
+ # gradient_accumulation_steps: 4
35
+ per_device_eval_batch_size: 8
36
+ eval_strategy: "steps"
37
+ dataloader_num_workers: 8
38
+ # bf16: true
39
+ save_steps: 500
40
+ logging_steps: 10
41
+ eval_steps: 100
42
+ warmup_steps: 100
43
+ learning_rate: 2e-4
44
+ save_total_limit: 1
45
+ # resume_from_checkpoint: true
46
+ # optim: "paged_adamw_8bit"
47
+ # wandb logging
48
+ # wandb_project: "colqwen2"
49
+ # run_name: "colqwen2-ba32-nolora"
50
+ report_to: "wandb"
51
+
52
+
53
+ peft_config:
54
+ (): peft.LoraConfig
55
+ r: 32
56
+ lora_alpha: 32
57
+ lora_dropout: 0.1
58
+ init_lora_weights: "gaussian"
59
+ bias: "none"
60
+ task_type: "FEATURE_EXTRACTION"
61
+ target_modules: '(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
62
+ # target_modules: '(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
63
+
vocab.json ADDED
The diff for this file is too large to render. See raw diff