---
library_name: diffusers
---
# Mann-E FLUX[Dev] Edition
## How to use the model
### Install needed libraries
```
pip install git+https://github.com/huggingface/diffusers.git transformers==4.42.4 accelerate xformers peft sentencepiece protobuf -q
```
### Execution code
```python
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("mann-e/mann-e_flux", torch_dtype=dtype, vae=taef1).to(device)
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
prompt = "an astronaut riding a horse"
pipe(
prompt=f"{prompt}",
guidance_scale=3.5,
num_inference_steps=10,
width=720,
height=1280,
generator=generator,
output_type="pil"
).images[0].save("output.png")
```
## Tips and Tricks
1. Adding `mj-v6.1-style` to the prompts specially the cinematic and photo realistic prompts can make the result quality high as hell! Give it a try.
2. The best `guidance_scale` is somewhere between 3.5 and 5.0
3. Inference steps between 8 and 16 are working very well.