File size: 2,815 Bytes
7db32f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
tags:
- generated_from_trainer
model-index:
- name: enlm-roberta-final
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# enlm-roberta-final

This model is a fine-tuned version of [manirai91/enlm-roberta](https://huggingface.co/manirai91/enlm-roberta) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4187

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 128
- total_train_batch_size: 8192
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
- lr_scheduler_type: polynomial
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.5245        | 0.34  | 160  | 1.4187          |
| 1.5245        | 0.69  | 320  | 1.4183          |
| 1.5259        | 1.03  | 480  | 1.4177          |
| 1.5265        | 1.37  | 640  | 1.4185          |
| 1.5245        | 1.72  | 800  | 1.4190          |
| 1.5241        | 2.06  | 960  | 1.4172          |
| 1.5227        | 2.4   | 1120 | 1.4165          |
| 1.5226        | 2.75  | 1280 | 1.4152          |
| 1.522         | 3.09  | 1440 | 1.4190          |
| 1.5243        | 3.43  | 1600 | 1.4177          |
| 1.5213        | 3.78  | 1760 | 1.4134          |
| 1.524         | 4.12  | 1920 | 1.4140          |
| 1.5223        | 4.46  | 2080 | 1.4173          |
| 1.5236        | 4.81  | 2240 | 1.4121          |
| 1.5239        | 5.15  | 2400 | 1.4186          |
| 1.5203        | 5.49  | 2560 | 1.4154          |
| 1.522         | 5.84  | 2720 | 1.4162          |
| 1.5209        | 6.18  | 2880 | 1.4154          |
| 1.5196        | 6.52  | 3040 | 1.4153          |
| 1.5209        | 6.87  | 3200 | 1.4122          |
| 1.5202        | 7.21  | 3360 | 1.4146          |
| 1.5192        | 7.55  | 3520 | 1.4141          |
| 1.5215        | 7.9   | 3680 | 1.4123          |
| 1.5228        | 8.24  | 3840 | 1.4147          |
| 1.5222        | 8.58  | 4000 | 1.4144          |
| 1.5201        | 8.93  | 4160 | 1.4173          |
| 1.523         | 9.27  | 4320 | 1.4171          |
| 1.5212        | 9.61  | 4480 | 1.4149          |
| 1.522         | 9.96  | 4640 | 1.4187          |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.3.2
- Tokenizers 0.12.1