manandey commited on
Commit
2a341aa
·
1 Parent(s): 932012f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -3
README.md CHANGED
@@ -2,8 +2,6 @@
2
  language: as
3
  datasets:
4
  - common_voice
5
- metrics:
6
- - wer
7
  tags:
8
  - audio
9
  - automatic-speech-recognition
@@ -25,11 +23,16 @@ model-index:
25
  type: wer
26
  value: 74.25
27
  ---
 
28
  # Wav2Vec2-Large-XLSR-53-Assamese
 
29
  Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Assamese using the [Common Voice](https://huggingface.co/datasets/common_voice)
30
  When using this model, make sure that your speech input is sampled at 16kHz.
 
31
  ## Usage
 
32
  The model can be used directly (without a language model) as follows:
 
33
  ```python
34
  import torch
35
  import torchaudio
@@ -39,8 +42,10 @@ test_dataset = load_dataset("common_voice", "as", split="test[:2%]").
39
  processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-assamese")
40
  model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-assamese")
41
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
 
42
  # Preprocessing the datasets.
43
  # We need to read the aduio files as arrays
 
44
  def speech_file_to_array_fn(batch):
45
  speech_array, sampling_rate = torchaudio.load(batch["path"])
46
  batch["speech"] = resampler(speech_array).squeeze().numpy()
@@ -53,8 +58,11 @@ predicted_ids = torch.argmax(logits, dim=-1)
53
  print("Prediction:", processor.batch_decode(predicted_ids))
54
  print("Reference:", test_dataset["sentence"][:2])
55
  ```
 
56
  ## Evaluation
 
57
  The model can be evaluated as follows on the {language} test data of Common Voice.
 
58
  ```python
59
  import torch
60
  import torchaudio
@@ -66,10 +74,12 @@ wer = load_metric("wer")
66
  processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-assamese")
67
  model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-assamese")
68
  model.to("cuda")
69
- chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\।\']'
70
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
 
71
  # Preprocessing the datasets.
72
  # We need to read the aduio files as arrays
 
73
  def speech_file_to_array_fn(batch):
74
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
75
  speech_array, sampling_rate = torchaudio.load(batch["path"])
@@ -88,6 +98,8 @@ def evaluate(batch):
88
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
89
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
90
  ```
 
91
  **Test Result**: 74.25%
 
92
  ## Training
93
  The Common Voice `train`, `validation` datasets were used for training.
 
2
  language: as
3
  datasets:
4
  - common_voice
 
 
5
  tags:
6
  - audio
7
  - automatic-speech-recognition
 
23
  type: wer
24
  value: 74.25
25
  ---
26
+
27
  # Wav2Vec2-Large-XLSR-53-Assamese
28
+
29
  Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Assamese using the [Common Voice](https://huggingface.co/datasets/common_voice)
30
  When using this model, make sure that your speech input is sampled at 16kHz.
31
+
32
  ## Usage
33
+
34
  The model can be used directly (without a language model) as follows:
35
+
36
  ```python
37
  import torch
38
  import torchaudio
 
42
  processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-assamese")
43
  model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-assamese")
44
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
45
+
46
  # Preprocessing the datasets.
47
  # We need to read the aduio files as arrays
48
+
49
  def speech_file_to_array_fn(batch):
50
  speech_array, sampling_rate = torchaudio.load(batch["path"])
51
  batch["speech"] = resampler(speech_array).squeeze().numpy()
 
58
  print("Prediction:", processor.batch_decode(predicted_ids))
59
  print("Reference:", test_dataset["sentence"][:2])
60
  ```
61
+
62
  ## Evaluation
63
+
64
  The model can be evaluated as follows on the {language} test data of Common Voice.
65
+
66
  ```python
67
  import torch
68
  import torchaudio
 
74
  processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-assamese")
75
  model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-assamese")
76
  model.to("cuda")
77
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\’\–\(\)\'\।]'
78
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
79
+
80
  # Preprocessing the datasets.
81
  # We need to read the aduio files as arrays
82
+
83
  def speech_file_to_array_fn(batch):
84
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
85
  speech_array, sampling_rate = torchaudio.load(batch["path"])
 
98
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
99
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
100
  ```
101
+
102
  **Test Result**: 74.25%
103
+
104
  ## Training
105
  The Common Voice `train`, `validation` datasets were used for training.