Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- pp-LunarLaner-v2.zip +3 -0
- pp-LunarLaner-v2/_stable_baselines3_version +1 -0
- pp-LunarLaner-v2/data +99 -0
- pp-LunarLaner-v2/policy.optimizer.pth +3 -0
- pp-LunarLaner-v2/policy.pth +3 -0
- pp-LunarLaner-v2/pytorch_variables.pth +3 -0
- pp-LunarLaner-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 249.22 +/- 34.33
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x786daad9cee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x786daad9cf70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x786daad9d000>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x786daad9d090>", "_build": "<function ActorCriticPolicy._build at 0x786daad9d120>", "forward": "<function ActorCriticPolicy.forward at 0x786daad9d1b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x786daad9d240>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x786daad9d2d0>", "_predict": "<function ActorCriticPolicy._predict at 0x786daad9d360>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x786daad9d3f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x786daad9d480>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x786daad9d510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x786daad36380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1118688, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698253991645277983, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADXBT276qo+4HDlvR3VSb6rlhu9dcoyvQAAAAAAAAAA81+9PUiLs7rNmIe7fXxbONE9dbpxDQ85AAAAAAAAgD8Atwc9Kexpuk7Lhrt8B1Q49vQhO6izCTkAAIA/AACAP3PEEj5uY2M/vkbFvZwekr6Hb809HW8BvAAAAAAAAAAAzV1UPXxeCD04jNW9UoI/vpRNH73TXUM9AAAAAAAAAAAmRIk9UQNxPrVwz73SUm++Qgh6PJp9tLsAAAAAAAAAAPOMB77k6QQ+GI2OPe0+aL6pJAi81pG7vAAAAAAAAAAAAACGu+HGpbpIn3Q7iZ6KPILPIbuDR3E9AACAPwAAgD9mXFA8/U0qP+4NFr37kYi+RbedO+NByLsAAAAAAAAAAO12Or5GhYA/6HY8vomEpL6raYe+im0tuwAAAAAAAAAAOmIKPmtXpT92p8Y+OY6ZviQ8az4wUOk9AAAAAAAAAADAjFK+xVUXPyhaUT5HWGG+7AH7PFCSRL0AAAAAAAAAAJoJ3bxIC4i6TwEVuVohC7TpRNe5PG4tOAAAgD8AAIA/AC9mvU8qULziHCm7ueC4PGCToD06jco7AACAPwAAgD/TmIc+TJWXP7Pe5T69O82+UcDSPv8uEj4AAAAAAAAAAJrxr7vD3Ve64nBnuJIinbNMuRk7bxWHNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.8885888, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCJAC4jKPqMAWyUTSUBjAF0lEdAnNl0LMLWqnV9lChoBkdAcDFvrnkkr2gHTVABaAhHQJzaF3Tuv2Z1fZQoaAZHQG6aH0kGA09oB01QAWgIR0Cc2ts7+1jRdX2UKGgGR0ByYSfg75mAaAdNcQFoCEdAnN7dlRP423V9lChoBkdAblayu6mO2mgHTUYBaAhHQJzfqdFvybx1fZQoaAZHQHDmfQF9roJoB00sAWgIR0Cc4JGqPwNLdX2UKGgGR0BvJ9LlFMIvaAdNigFoCEdAnODeqaPS2HV9lChoBkdAS9aOxSpBHGgHS+FoCEdAnOD+jqOcUnV9lChoBkdAckWADq4YrWgHTQ0BaAhHQJzk6tITXat1fZQoaAZHQHCHVt0mtyRoB00nAWgIR0Cc5PA5q/M4dX2UKGgGR0Bz6EZHd43WaAdNZQFoCEdAnOV9RaX8fnV9lChoBkdAcPwjp9qk/WgHTXIBaAhHQJzlkznA6+51fZQoaAZHQHFUyMxXXAdoB01tAWgIR0Cc5bYHPeHjdX2UKGgGR0Bw59RhttQ9aAdNVAFoCEdAnOX3jQzDXXV9lChoBkdAcNRCZF5OamgHTYcBaAhHQJzmT3RG+bp1fZQoaAZHQG4jrZamoBJoB02EAWgIR0Cc53Cqp97XdX2UKGgGR0BxbqEtdzGQaAdN1wFoCEdAnOkqrBCUo3V9lChoBkdAcAWtLcsUZmgHTREBaAhHQJzpo0vXbud1fZQoaAZHQHChVDjR2KVoB00nAWgIR0Cc6bz/p+tsdX2UKGgGR0Bw37LowEhaaAdNJQFoCEdAnOsUvwmVq3V9lChoBkdAYJt3PAwfyWgHTegDaAhHQJzrTr9l2/11fZQoaAZHQG7686V+qipoB00/AWgIR0Cc7C6ySmqHdX2UKGgGR0BUyvustCiRaAdN6ANoCEdAnO5iMYMvy3V9lChoBkdAbZtjXnQpnmgHTT4BaAhHQJzvvLDAJsx1fZQoaAZHQHBqiEtdzGRoB01GAWgIR0Cc8A3y7PIGdX2UKGgGR0BxTuEal1r7aAdNJAFoCEdAnPAx8hLXc3V9lChoBkdAbvkChew9q2gHTT0BaAhHQJzwPBk7Oml1fZQoaAZHQHAdvwEyLydoB01DAWgIR0Cc8NfL9uP4dX2UKGgGR0BwP9D5TIeYaAdNUgFoCEdAnPD4e1a4c3V9lChoBkdAcDjhsqJ/G2gHTVIBaAhHQJzxDsolUqB1fZQoaAZHQHHnSZBsyi5oB03qAWgIR0Cc8hOmR/3GdX2UKGgGR0BwAWZRbbDeaAdNTAFoCEdAnPJ/VEuxr3V9lChoBkdAcH1OiWVu8GgHTSEBaAhHQJzyxyKekHl1fZQoaAZHQG/wTz3AVO9oB005AWgIR0Cc8874SHuadX2UKGgGR0BtvW56MR6GaAdNLgFoCEdAnPTykKu0TnV9lChoBkdAcS9aTwDvE2gHTToBaAhHQJ0IA91U2k11fZQoaAZHQHChSLVFx4poB01cAWgIR0CdCBLn9vS/dX2UKGgGR0BrwFIkJKJ3aAdNhgFoCEdAnQgh4Y77sXV9lChoBkdAcWg1UlzEJmgHTTIBaAhHQJ0KnpeNT991fZQoaAZHQHA/bVrhzeZoB00hAWgIR0CdC5v0h/y5dX2UKGgGR0ByEdB1LamGaAdNEQFoCEdAnQyronrpq3V9lChoBkdAcLjJaaCtimgHTRkBaAhHQJ0M4IomXw91fZQoaAZHQG0agWJrLyNoB00XAWgIR0CdDR6eoUBXdX2UKGgGR0BwrXPhQ3xXaAdNRAFoCEdAnQ3rHyVfNXV9lChoBkdAcC4gzxgAqGgHTVABaAhHQJ0OQ7uDzy11fZQoaAZHQHFg+yu6mO5oB01ZAWgIR0CdDtcCo0hvdX2UKGgGR0BP5qqn3ta7aAdNCAFoCEdAnQ8Ps/pt8HV9lChoBkdAbs7rgwXZXmgHTUIBaAhHQJ0RA10knkV1fZQoaAZHQG+bWkrPMStoB018AWgIR0CdEunmJWNndX2UKGgGR0BxmDUI9kjHaAdNbQFoCEdAnRVUZeiSJXV9lChoBkdAb+zU7Sy+pWgHTSUBaAhHQJ0VmDsdDIB1fZQoaAZHQG+bEQGwA2hoB01pAWgIR0CdFtXVsk6cdX2UKGgGR0BwgwWznieeaAdNUwFoCEdAnReD/ACW/3V9lChoBkdAbJtmapgkT2gHTSoBaAhHQJ0YA8gZCOZ1fZQoaAZHQHBj7hisnzBoB01mAWgIR0CdGEVjqfOEdX2UKGgGR0BxucaQ3gk1aAdNKwFoCEdAnRnO54GD+XV9lChoBkdAbon+6RQrMGgHTUABaAhHQJ0aZdKNAC51fZQoaAZHQHLfhisny/doB00rAWgIR0CdGs1Tzd1udX2UKGgGR0BxFXjp9qk/aAdNOAFoCEdAnRr73wkPc3V9lChoBkdAcfd2OyVv/GgHTUMBaAhHQJ0cANWluWN1fZQoaAZHQHGcskpqh11oB014AWgIR0CdHCC6Ymb9dX2UKGgGR0BwGpujynUEaAdNHwFoCEdAnRyFtbcGknV9lChoBkdAcc6bJfYzzmgHTacBaAhHQJ0c4NnXd0t1fZQoaAZHQHC7nKr7wa1oB01dAWgIR0CdHOr+YMOPdX2UKGgGR0A2Hjnmq5skaAdL8WgIR0CdHqHmA9V4dX2UKGgGR0BwF/cZccENaAdNHwFoCEdAnR8so2GZeHV9lChoBkdAcYX87ZFoc2gHTWMBaAhHQJ0fpuLrHEN1fZQoaAZHQHBg1HJ9y95oB008AWgIR0CdIaQu27WedX2UKGgGR0Bx/LWJ79hraAdNSgFoCEdAnSKlnM+u/3V9lChoBkdAcTdzUZvUBmgHTUMBaAhHQJ0ipuJk5IZ1fZQoaAZHQG926cI7eVNoB02MAWgIR0CdIq5uZThpdX2UKGgGR0BwaLsXzlLfaAdNGwFoCEdAnSNRArxy4nV9lChoBkdAcGTi6g/Ts2gHTTUBaAhHQJ0koy0rsjV1fZQoaAZHQEo4/Vy3kPtoB0v6aAhHQJ0lBU83dbh1fZQoaAZHQHD7FHFxXGRoB01pAWgIR0CdJY/xDst1dX2UKGgGR0BvyqJuVHFxaAdNTAFoCEdAnSWhzmwJPnV9lChoBkdAcaos/6frbGgHTR0BaAhHQJ0lu5Yoy9F1fZQoaAZHQG6YsXJo0yhoB01IAWgIR0CdJol5WzWxdX2UKGgGR0ByxP4EfT1DaAdNTgFoCEdAnSaac3EQ5HV9lChoBkdAcyebt7a7E2gHTToBaAhHQJ0m5OARTS91fZQoaAZHQG8KYt6HCXRoB00jAWgIR0CdKRs1KoQ4dX2UKGgGR0Bvrn7Lt/nXaAdNXQFoCEdAnSn4DDCP63V9lChoBkfAI4TrE9+w1WgHS/loCEdAnSqliBoVVXV9lChoBkdARLqVMVUMomgHS+loCEdAnSq0Uwi7kHV9lChoBkdAcWxn0Cih4GgHTWkBaAhHQJ0q6e18b711fZQoaAZHQHCITA31jAloB00FAWgIR0CdLOc45tFbdX2UKGgGR0Bwcz2kBS1maAdNQgFoCEdAnS0teQdS23V9lChoBkdAb4jReC04R2gHTUsBaAhHQJ0tdmK64Dt1fZQoaAZHQHD2TFVDKHRoB008AWgIR0CdQMxtpEhJdX2UKGgGR0Bu8M078vVWaAdNmAFoCEdAnUDNJz1bq3V9lChoBkdAbTuFFDv3J2gHTT8BaAhHQJ1BrztkWh11fZQoaAZHQHB42/i5uqFoB00kAWgIR0CdQg4RVZLadX2UKGgGR0BLVilabF0gaAdL1WgIR0CdQnXCTEBKdX2UKGgGR0BxhwwqRU3oaAdNQQFoCEdAnUNzWXkYGnV9lChoBkdAcVHk1Muez2gHTYMBaAhHQJ1FJ78ejmF1fZQoaAZHQG7lMqjJuEVoB00lAWgIR0CdR5x6OYICdX2UKGgGR0ByFp3zMA3laAdNIwFoCEdAnUiOZPVNH3V9lChoBkdAcD/NTtLL6mgHTUsBaAhHQJ1KzXumaYx1fZQoaAZHQHIuR4dIXj5oB01FAWgIR0CdStr3Cbc5dX2UKGgGR0BwI2Fg2IfsaAdN1wFoCEdAnUuw2ycCo3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 304, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
pp-LunarLaner-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fed78bd4fa8d54cf0d2be5823c6d8fb382545f47ef981d48029ea0e72ffc7b9
|
3 |
+
size 148039
|
pp-LunarLaner-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
pp-LunarLaner-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x786daad9cee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x786daad9cf70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x786daad9d000>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x786daad9d090>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x786daad9d120>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x786daad9d1b0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x786daad9d240>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x786daad9d2d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x786daad9d360>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x786daad9d3f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x786daad9d480>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x786daad9d510>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x786daad36380>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1118688,
|
25 |
+
"_total_timesteps": 10000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1698253991645277983,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADXBT276qo+4HDlvR3VSb6rlhu9dcoyvQAAAAAAAAAA81+9PUiLs7rNmIe7fXxbONE9dbpxDQ85AAAAAAAAgD8Atwc9Kexpuk7Lhrt8B1Q49vQhO6izCTkAAIA/AACAP3PEEj5uY2M/vkbFvZwekr6Hb809HW8BvAAAAAAAAAAAzV1UPXxeCD04jNW9UoI/vpRNH73TXUM9AAAAAAAAAAAmRIk9UQNxPrVwz73SUm++Qgh6PJp9tLsAAAAAAAAAAPOMB77k6QQ+GI2OPe0+aL6pJAi81pG7vAAAAAAAAAAAAACGu+HGpbpIn3Q7iZ6KPILPIbuDR3E9AACAPwAAgD9mXFA8/U0qP+4NFr37kYi+RbedO+NByLsAAAAAAAAAAO12Or5GhYA/6HY8vomEpL6raYe+im0tuwAAAAAAAAAAOmIKPmtXpT92p8Y+OY6ZviQ8az4wUOk9AAAAAAAAAADAjFK+xVUXPyhaUT5HWGG+7AH7PFCSRL0AAAAAAAAAAJoJ3bxIC4i6TwEVuVohC7TpRNe5PG4tOAAAgD8AAIA/AC9mvU8qULziHCm7ueC4PGCToD06jco7AACAPwAAgD/TmIc+TJWXP7Pe5T69O82+UcDSPv8uEj4AAAAAAAAAAJrxr7vD3Ve64nBnuJIinbNMuRk7bxWHNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": 0.8885888,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCJAC4jKPqMAWyUTSUBjAF0lEdAnNl0LMLWqnV9lChoBkdAcDFvrnkkr2gHTVABaAhHQJzaF3Tuv2Z1fZQoaAZHQG6aH0kGA09oB01QAWgIR0Cc2ts7+1jRdX2UKGgGR0ByYSfg75mAaAdNcQFoCEdAnN7dlRP423V9lChoBkdAblayu6mO2mgHTUYBaAhHQJzfqdFvybx1fZQoaAZHQHDmfQF9roJoB00sAWgIR0Cc4JGqPwNLdX2UKGgGR0BvJ9LlFMIvaAdNigFoCEdAnODeqaPS2HV9lChoBkdAS9aOxSpBHGgHS+FoCEdAnOD+jqOcUnV9lChoBkdAckWADq4YrWgHTQ0BaAhHQJzk6tITXat1fZQoaAZHQHCHVt0mtyRoB00nAWgIR0Cc5PA5q/M4dX2UKGgGR0Bz6EZHd43WaAdNZQFoCEdAnOV9RaX8fnV9lChoBkdAcPwjp9qk/WgHTXIBaAhHQJzlkznA6+51fZQoaAZHQHFUyMxXXAdoB01tAWgIR0Cc5bYHPeHjdX2UKGgGR0Bw59RhttQ9aAdNVAFoCEdAnOX3jQzDXXV9lChoBkdAcNRCZF5OamgHTYcBaAhHQJzmT3RG+bp1fZQoaAZHQG4jrZamoBJoB02EAWgIR0Cc53Cqp97XdX2UKGgGR0BxbqEtdzGQaAdN1wFoCEdAnOkqrBCUo3V9lChoBkdAcAWtLcsUZmgHTREBaAhHQJzpo0vXbud1fZQoaAZHQHChVDjR2KVoB00nAWgIR0Cc6bz/p+tsdX2UKGgGR0Bw37LowEhaaAdNJQFoCEdAnOsUvwmVq3V9lChoBkdAYJt3PAwfyWgHTegDaAhHQJzrTr9l2/11fZQoaAZHQG7686V+qipoB00/AWgIR0Cc7C6ySmqHdX2UKGgGR0BUyvustCiRaAdN6ANoCEdAnO5iMYMvy3V9lChoBkdAbZtjXnQpnmgHTT4BaAhHQJzvvLDAJsx1fZQoaAZHQHBqiEtdzGRoB01GAWgIR0Cc8A3y7PIGdX2UKGgGR0BxTuEal1r7aAdNJAFoCEdAnPAx8hLXc3V9lChoBkdAbvkChew9q2gHTT0BaAhHQJzwPBk7Oml1fZQoaAZHQHAdvwEyLydoB01DAWgIR0Cc8NfL9uP4dX2UKGgGR0BwP9D5TIeYaAdNUgFoCEdAnPD4e1a4c3V9lChoBkdAcDjhsqJ/G2gHTVIBaAhHQJzxDsolUqB1fZQoaAZHQHHnSZBsyi5oB03qAWgIR0Cc8hOmR/3GdX2UKGgGR0BwAWZRbbDeaAdNTAFoCEdAnPJ/VEuxr3V9lChoBkdAcH1OiWVu8GgHTSEBaAhHQJzyxyKekHl1fZQoaAZHQG/wTz3AVO9oB005AWgIR0Cc8874SHuadX2UKGgGR0BtvW56MR6GaAdNLgFoCEdAnPTykKu0TnV9lChoBkdAcS9aTwDvE2gHTToBaAhHQJ0IA91U2k11fZQoaAZHQHChSLVFx4poB01cAWgIR0CdCBLn9vS/dX2UKGgGR0BrwFIkJKJ3aAdNhgFoCEdAnQgh4Y77sXV9lChoBkdAcWg1UlzEJmgHTTIBaAhHQJ0KnpeNT991fZQoaAZHQHA/bVrhzeZoB00hAWgIR0CdC5v0h/y5dX2UKGgGR0ByEdB1LamGaAdNEQFoCEdAnQyronrpq3V9lChoBkdAcLjJaaCtimgHTRkBaAhHQJ0M4IomXw91fZQoaAZHQG0agWJrLyNoB00XAWgIR0CdDR6eoUBXdX2UKGgGR0BwrXPhQ3xXaAdNRAFoCEdAnQ3rHyVfNXV9lChoBkdAcC4gzxgAqGgHTVABaAhHQJ0OQ7uDzy11fZQoaAZHQHFg+yu6mO5oB01ZAWgIR0CdDtcCo0hvdX2UKGgGR0BP5qqn3ta7aAdNCAFoCEdAnQ8Ps/pt8HV9lChoBkdAbs7rgwXZXmgHTUIBaAhHQJ0RA10knkV1fZQoaAZHQG+bWkrPMStoB018AWgIR0CdEunmJWNndX2UKGgGR0BxmDUI9kjHaAdNbQFoCEdAnRVUZeiSJXV9lChoBkdAb+zU7Sy+pWgHTSUBaAhHQJ0VmDsdDIB1fZQoaAZHQG+bEQGwA2hoB01pAWgIR0CdFtXVsk6cdX2UKGgGR0BwgwWznieeaAdNUwFoCEdAnReD/ACW/3V9lChoBkdAbJtmapgkT2gHTSoBaAhHQJ0YA8gZCOZ1fZQoaAZHQHBj7hisnzBoB01mAWgIR0CdGEVjqfOEdX2UKGgGR0BxucaQ3gk1aAdNKwFoCEdAnRnO54GD+XV9lChoBkdAbon+6RQrMGgHTUABaAhHQJ0aZdKNAC51fZQoaAZHQHLfhisny/doB00rAWgIR0CdGs1Tzd1udX2UKGgGR0BxFXjp9qk/aAdNOAFoCEdAnRr73wkPc3V9lChoBkdAcfd2OyVv/GgHTUMBaAhHQJ0cANWluWN1fZQoaAZHQHGcskpqh11oB014AWgIR0CdHCC6Ymb9dX2UKGgGR0BwGpujynUEaAdNHwFoCEdAnRyFtbcGknV9lChoBkdAcc6bJfYzzmgHTacBaAhHQJ0c4NnXd0t1fZQoaAZHQHC7nKr7wa1oB01dAWgIR0CdHOr+YMOPdX2UKGgGR0A2Hjnmq5skaAdL8WgIR0CdHqHmA9V4dX2UKGgGR0BwF/cZccENaAdNHwFoCEdAnR8so2GZeHV9lChoBkdAcYX87ZFoc2gHTWMBaAhHQJ0fpuLrHEN1fZQoaAZHQHBg1HJ9y95oB008AWgIR0CdIaQu27WedX2UKGgGR0Bx/LWJ79hraAdNSgFoCEdAnSKlnM+u/3V9lChoBkdAcTdzUZvUBmgHTUMBaAhHQJ0ipuJk5IZ1fZQoaAZHQG926cI7eVNoB02MAWgIR0CdIq5uZThpdX2UKGgGR0BwaLsXzlLfaAdNGwFoCEdAnSNRArxy4nV9lChoBkdAcGTi6g/Ts2gHTTUBaAhHQJ0koy0rsjV1fZQoaAZHQEo4/Vy3kPtoB0v6aAhHQJ0lBU83dbh1fZQoaAZHQHD7FHFxXGRoB01pAWgIR0CdJY/xDst1dX2UKGgGR0BvyqJuVHFxaAdNTAFoCEdAnSWhzmwJPnV9lChoBkdAcaos/6frbGgHTR0BaAhHQJ0lu5Yoy9F1fZQoaAZHQG6YsXJo0yhoB01IAWgIR0CdJol5WzWxdX2UKGgGR0ByxP4EfT1DaAdNTgFoCEdAnSaac3EQ5HV9lChoBkdAcyebt7a7E2gHTToBaAhHQJ0m5OARTS91fZQoaAZHQG8KYt6HCXRoB00jAWgIR0CdKRs1KoQ4dX2UKGgGR0Bvrn7Lt/nXaAdNXQFoCEdAnSn4DDCP63V9lChoBkfAI4TrE9+w1WgHS/loCEdAnSqliBoVVXV9lChoBkdARLqVMVUMomgHS+loCEdAnSq0Uwi7kHV9lChoBkdAcWxn0Cih4GgHTWkBaAhHQJ0q6e18b711fZQoaAZHQHCITA31jAloB00FAWgIR0CdLOc45tFbdX2UKGgGR0Bwcz2kBS1maAdNQgFoCEdAnS0teQdS23V9lChoBkdAb4jReC04R2gHTUsBaAhHQJ0tdmK64Dt1fZQoaAZHQHD2TFVDKHRoB008AWgIR0CdQMxtpEhJdX2UKGgGR0Bu8M078vVWaAdNmAFoCEdAnUDNJz1bq3V9lChoBkdAbTuFFDv3J2gHTT8BaAhHQJ1BrztkWh11fZQoaAZHQHB42/i5uqFoB00kAWgIR0CdQg4RVZLadX2UKGgGR0BLVilabF0gaAdL1WgIR0CdQnXCTEBKdX2UKGgGR0BxhwwqRU3oaAdNQQFoCEdAnUNzWXkYGnV9lChoBkdAcVHk1Muez2gHTYMBaAhHQJ1FJ78ejmF1fZQoaAZHQG7lMqjJuEVoB00lAWgIR0CdR5x6OYICdX2UKGgGR0ByFp3zMA3laAdNIwFoCEdAnUiOZPVNH3V9lChoBkdAcD/NTtLL6mgHTUsBaAhHQJ1KzXumaYx1fZQoaAZHQHIuR4dIXj5oB01FAWgIR0CdStr3Cbc5dX2UKGgGR0BwI2Fg2IfsaAdN1wFoCEdAnUuw2ycCo3VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 304,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
pp-LunarLaner-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a42cc02a31606abe2e2ba103355def2958b67d814d87257ae17197a2474deaff
|
3 |
+
size 88362
|
pp-LunarLaner-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b7b994c6ff116658c62482c1a83398ed959550d7642f43b3f3ec6d2454afb2f
|
3 |
+
size 43762
|
pp-LunarLaner-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
pp-LunarLaner-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (178 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 249.2224408314155, "std_reward": 34.33032195412433, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-25T17:37:23.948268"}
|