File size: 3,844 Bytes
ddfadb5 18ab81f ddfadb5 18ab81f a8ee81a 18ab81f 472637c b7fc09d 18ab81f b7fc09d 18ab81f b7fc09d 18ab81f b7fc09d 18ab81f b7fc09d 6e64a3e b7fc09d 18ab81f 6e64a3e 51ccaf7 6b580ed 18ab81f 6616bc4 18ab81f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
---
license: apache-2.0
library_name: transformers
---
# Laser-Dolphin-Mixtral-4x7b-dpo

Credit to Fernando Fernandes and Eric Hartford for their project [laserRMT](https://github.com/cognitivecomputations/laserRMT)
This model is a medium-sized MoE implementation based on [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)
The process is outlined in this [notebook](https://github.com/cognitivecomputations/laserRMT/blob/main/examples/laser-dolphin-mixtral-2x7b.ipynb)
## Code Example
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt")
# Generate output tokens
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
# Decode the generated tokens to a string
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Load the model and tokenizer
model_id = "macadeliccc/laser-dolphin-mixtral-4x7b-dpo"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
prompt = "Write a quicksort algorithm in python"
# Generate and print responses for each language
print("Response:")
print(generate_response(prompt), "\n")
```
## Example output
can you write me a quicksort algorithm in python?
Sure, here's a quicksort algorithm implemented in Python:
```python
def quicksort(arr):
if len(arr) <= 1:
return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quicksort(left) + middle + quicksort(right)
```
This implementation uses the median of the array as the pivot.
It first checks if the array has one or fewer elements, in which case it is already sorted and can be returned as is.
Otherwise, it selects the pivot as the middle element of the array. Then, it partitions the array into three sub-arrays: elements less than the pivot, elements equal to the pivot, and elements greater than the pivot.
It recursively sorts the left and right sub-arrays and concatenates the results with the middle sub-array to obtain the final sorted array.
## GGUF
Q4_K_M and Q5_K_M quants are available [here](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-4x7b-dpo-GGUF)

## Eval
**Model evaluated in 4bit**
----Benchmark Complete----
+ 2024-01-24 15:03:08
+ Time taken: 37.4 mins
+ Prompt Format: Mistral
+ Model: macadeliccc/laser-dolphin-mixtral-4x7b-dpo
+ Score (v2): 71.04
+ Parseable: 169.0
---------------
## Citations
Fernando Fernandes Neto and Eric Hartford. "Optimizing Large Language Models Using Layer-Selective Rank Reduction and Random Matrix Theory." 2024.
```bibtex
@article{sharma2023truth,
title={The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction},
author={Sharma, Pratyusha and Ash, Jordan T and Misra, Dipendra},
journal={arXiv preprint arXiv:2312.13558},
year={2023} }
```
```bibtex
@article{gao2021framework,
title={A framework for few-shot language model evaluation},
author={Gao, Leo and Tow, Jonathan and Biderman, Stella and Black, Sid and DiPofi, Anthony and Foster, Charles and Golding, Laurence and Hsu, Jeffrey and McDonell, Kyle and Muennighoff, Niklas and others},
journal={Version v0. 0.1. Sept},
year={2021}
}
``` |