Commit
·
6c9a3d5
1
Parent(s):
65b6b8e
Vanilla PPO agent 500k
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- mb-LunarLander.zip +3 -0
- mb-LunarLander/_stable_baselines3_version +1 -0
- mb-LunarLander/data +94 -0
- mb-LunarLander/policy.optimizer.pth +3 -0
- mb-LunarLander/policy.pth +3 -0
- mb-LunarLander/pytorch_variables.pth +3 -0
- mb-LunarLander/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 224.96 +/- 73.06
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7feebf588170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feebf588200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feebf588290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feebf588320>", "_build": "<function ActorCriticPolicy._build at 0x7feebf5883b0>", "forward": "<function ActorCriticPolicy.forward at 0x7feebf588440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feebf5884d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7feebf588560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feebf5885f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feebf588680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7feebf588710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7feebf5de210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652208976.893236, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABPPKb6aQoE+Od7BPQ3kbL7wuP87LYVevQAAAAAAAAAAmnyxvFwPbjkXhTM6s+ybtRxhcLuIxFa5AACAPwAAgD+aiOk8lnq4PxK5Mz+ATZg+4g+vvPNUKr0AAAAAAAAAANqVvz3DvQu6ZpzLur6kN7XaCJu7nLGqNAAAAAAAAIA/On9cPt/v3jwGukk6WVgPOcuAdj7CxpC5AACAPwAAgD+TWUS+01KPPwjP6L5x/+K+wthVvkx9C74AAAAAAAAAAHogXz6DEma8c9++OobCu7iUM9C9eg3nuQAAgD8AAIA/QE2RvXPoUD9NKR+9nUnmvqejdb3Kx0k9AAAAAAAAAABg3p0+VpwqPxg+SD03Mp2+oAIiPiqoN70AAAAAAAAAAINGhj69/iO9rZogOwXf5Lmn3ZG+zvZZugAAgD8AAIA/mqlzvpTiNb1IJAm7V+S+uaEjnT6yV4Y6AACAPwAAgD/Nxrk8IeqtP0hCDj9kmR6/SbllvNSkJbwAAAAAAAAAAOaahj3bykI/u5T/PS+0wb7TDD490icbvQAAAAAAAAAAmpSevMMVIjmA/OI6zbjXNati8box4we6AACAPwAAgD8zc4y7rof1uGqf/rlLfnQ1bEmbOwrC6LQAAIA/AACAPzOblbwKhzu5EGTUNmxKAjKV9k667fP8tQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1jpxOd6oZECUhpRSlIwBbJRN6AOMAXSUR0CUPP9bor4GdX2UKGgGaAloD0MI2BAcl3GfYkCUhpRSlGgVTegDaBZHQJRCIPd2xIJ1fZQoaAZoCWgPQwi31awzvv8XQJSGlFKUaBVL+WgWR0CUQowJw84hdX2UKGgGaAloD0MIS8rd5/j/ZECUhpRSlGgVTegDaBZHQJRD4XXRPXV1fZQoaAZoCWgPQwgld9hEZphkQJSGlFKUaBVN6ANoFkdAlEkWmgrYoXV9lChoBmgJaA9DCNdppKXyoFxAlIaUUpRoFU3oA2gWR0CUSSm29crzdX2UKGgGaAloD0MIjlvMz438YECUhpRSlGgVTegDaBZHQJRNVfE4vOB1fZQoaAZoCWgPQwjJkjmWd2U5QJSGlFKUaBVNFQFoFkdAlFL9B0IToXV9lChoBmgJaA9DCG6kbJG0TmhAlIaUUpRoFU3oA2gWR0CUViSJTER8dX2UKGgGaAloD0MIK061FmZRXkCUhpRSlGgVTegDaBZHQJRaAcHWz4V1fZQoaAZoCWgPQwjjUSrhCahfQJSGlFKUaBVN6ANoFkdAlF5higCfYnV9lChoBmgJaA9DCPKyJhb4BkNAlIaUUpRoFU0BAWgWR0CUYydQO4G2dX2UKGgGaAloD0MIhzWVRWE2YkCUhpRSlGgVTegDaBZHQJTTvifg75p1fZQoaAZoCWgPQwhv2LYos8FdQJSGlFKUaBVN6ANoFkdAlNQzTz/ZNHV9lChoBmgJaA9DCAZLdQGvFGRAlIaUUpRoFU3oA2gWR0CU1Vri2lVMdX2UKGgGaAloD0MITtNnB1wiZUCUhpRSlGgVTegDaBZHQJTWN+uvECN1fZQoaAZoCWgPQwiRYKqZNf5pQJSGlFKUaBVNfAJoFkdAlNhpElVtGnV9lChoBmgJaA9DCB+eJciIEWFAlIaUUpRoFU3oA2gWR0CU3L/8EV32dX2UKGgGaAloD0MIozuInSn3YECUhpRSlGgVTegDaBZHQJTe+NJe3QV1fZQoaAZoCWgPQwj4UnjQ7IZcQJSGlFKUaBVN6ANoFkdAlOHMYVIqb3V9lChoBmgJaA9DCCMT8GskvGtAlIaUUpRoFU3GA2gWR0CU5vEEC/47dX2UKGgGaAloD0MIXoB9dOrDbkCUhpRSlGgVTSQBaBZHQJTneITGo751fZQoaAZoCWgPQwizCwbXXEVmQJSGlFKUaBVN6ANoFkdAlOeXwgDA8HV9lChoBmgJaA9DCPj9mxenUG9AlIaUUpRoFU1EAmgWR0CU6UB7/n4gdX2UKGgGaAloD0MIMiHmkiqkbkCUhpRSlGgVTcYDaBZHQJTr4H/tICl1fZQoaAZoCWgPQwiuLTwvFYNgQJSGlFKUaBVN6ANoFkdAlPI/+wTufHV9lChoBmgJaA9DCMhhMH/Fr3JAlIaUUpRoFU1MAmgWR0CU+O42S+xodX2UKGgGaAloD0MIr7SM1HvtZECUhpRSlGgVTegDaBZHQJT7tr8BMi91fZQoaAZoCWgPQwhjfm5oSvVhQJSGlFKUaBVN6ANoFkdAlP/8wlByCHV9lChoBmgJaA9DCMb83NAUlGJAlIaUUpRoFU3oA2gWR0CVCjof0VafdX2UKGgGaAloD0MIdLaA0HruXkCUhpRSlGgVTegDaBZHQJUTZ6dDpkh1fZQoaAZoCWgPQwhV+DO8WQRhQJSGlFKUaBVN6ANoFkdAlRPXxri2lXV9lChoBmgJaA9DCNs1Ia0xCV9AlIaUUpRoFU3oA2gWR0CVGEVEuxr0dX2UKGgGaAloD0MIvD/eq1ZOYkCUhpRSlGgVTegDaBZHQJUcwAdXDFZ1fZQoaAZoCWgPQwjn4JnQJJNhQJSGlFKUaBVN6ANoFkdAlR7Lcj7hvXV9lChoBmgJaA9DCOjaF9ALsGBAlIaUUpRoFU3oA2gWR0CVIXdxyXD4dX2UKGgGaAloD0MIpaFGIUmNYUCUhpRSlGgVTegDaBZHQJUmFkQPI4l1fZQoaAZoCWgPQwh9QQsJGIxbQJSGlFKUaBVN6ANoFkdAlSaDOcDr7nV9lChoBmgJaA9DCFa6u86GkmNAlIaUUpRoFU3oA2gWR0CVJqFN+LFXdX2UKGgGaAloD0MIMbPPYxStZ0CUhpRSlGgVTegDaBZHQJUoCx/ustF1fZQoaAZoCWgPQwjuXBjpxZtjQJSGlFKUaBVN6ANoFkdAlSphUrCm/HV9lChoBmgJaA9DCMk9Xd0xoHBAlIaUUpRoFU2lAWgWR0CVKtv0RODbdX2UKGgGaAloD0MIW7BUF3BXY0CUhpRSlGgVTegDaBZHQJUv6FGoaUB1fZQoaAZoCWgPQwjLoUW28/djQJSGlFKUaBVN6ANoFkdAlTW8sYl6aHV9lChoBmgJaA9DCMwJ2uTwbWJAlIaUUpRoFU3oA2gWR0CVOCHT7VJ+dX2UKGgGaAloD0MIR8uBHmqBb0CUhpRSlGgVTZECaBZHQJU46LWI42l1fZQoaAZoCWgPQwhiSbn7nDxiQJSGlFKUaBVN6ANoFkdAlTvVdPci4nV9lChoBmgJaA9DCLOVl/xPtmpAlIaUUpRoFU3SAWgWR0CVQ6efqX4TdX2UKGgGaAloD0MItg95y1WAbkCUhpRSlGgVTUcBaBZHQJVEieiBXjl1fZQoaAZoCWgPQwgDP6phv4VfQJSGlFKUaBVN6ANoFkdAlUW9jCpFTnV9lChoBmgJaA9DCM6pZACoIhBAlIaUUpRoFUvraBZHQJVHQNRWLgp1fZQoaAZoCWgPQwhOK4VArnBvQJSGlFKUaBVNhQJoFkdAlbNJ8F6iTXV9lChoBmgJaA9DCLTIdr6fWW5AlIaUUpRoFU0SA2gWR0CVs/AkLQXzdX2UKGgGaAloD0MIaahRSDJ/bUCUhpRSlGgVTV4CaBZHQJW2FuAI6bR1fZQoaAZoCWgPQwiHpuz0A9duQJSGlFKUaBVNaQJoFkdAlbdPYBeXzHV9lChoBmgJaA9DCFH1K52PsnBAlIaUUpRoFU3LAmgWR0CVuBP6be/IdX2UKGgGaAloD0MIpI6Oq5GKX0CUhpRSlGgVTegDaBZHQJW5zAdn0051fZQoaAZoCWgPQwhcdoh/2CI2QJSGlFKUaBVNCgFoFkdAlbqLTc6/7HV9lChoBmgJaA9DCDz2s1hKHHBAlIaUUpRoFU1eA2gWR0CVuvB2wFC+dX2UKGgGaAloD0MI+5EiMix1bECUhpRSlGgVTeIBaBZHQJW8+LQ5WBB1fZQoaAZoCWgPQwik+s4vyt5kQJSGlFKUaBVN6ANoFkdAlb2Xwb2lEnV9lChoBmgJaA9DCElnYORlsVtAlIaUUpRoFU3oA2gWR0CVxsX/YJ3QdX2UKGgGaAloD0MIUUoIVtUyb0CUhpRSlGgVTVoBaBZHQJXNVp5/smh1fZQoaAZoCWgPQwjMC7CPTqtwQJSGlFKUaBVNNwFoFkdAlc45QUHpr3V9lChoBmgJaA9DCHVbIhdckHBAlIaUUpRoFU2fAWgWR0CV0d752yLRdX2UKGgGaAloD0MIuaXVkHhjcUCUhpRSlGgVTd8BaBZHQJXSbo+wC8x1fZQoaAZoCWgPQwj6QV2kUG1kQJSGlFKUaBVN6ANoFkdAldbFSwW30HV9lChoBmgJaA9DCBB1H4DUz25AlIaUUpRoFU0lA2gWR0CV2MyquKXOdX2UKGgGaAloD0MIAb7bvPH6bECUhpRSlGgVTR4DaBZHQJXZdYJVsDZ1fZQoaAZoCWgPQwgBv0aSoFtvQJSGlFKUaBVNdgFoFkdAldv2KZUkwHV9lChoBmgJaA9DCDlkA+ni0mNAlIaUUpRoFU3oA2gWR0CV3Cpz90ihdX2UKGgGaAloD0MI0LhwICRTQUCUhpRSlGgVS+NoFkdAld5+jh1klXV9lChoBmgJaA9DCNcYdELoLmRAlIaUUpRoFU3oA2gWR0CV5hd5IH1OdX2UKGgGaAloD0MIE9OFWD2+cECUhpRSlGgVTd8CaBZHQJXmiRJVbRp1fZQoaAZoCWgPQwjKGB9mL+ZtQJSGlFKUaBVNIwFoFkdAlec0Ao5PuXV9lChoBmgJaA9DCHYXKCkw925AlIaUUpRoFU2CAWgWR0CV50VAzHjqdX2UKGgGaAloD0MIR5IgXAFRNkCUhpRSlGgVS+NoFkdAlekS8zyjHnV9lChoBmgJaA9DCEt0llkEB2BAlIaUUpRoFU3oA2gWR0CV6tJ2+wkgdX2UKGgGaAloD0MIfcucLos8Y0CUhpRSlGgVTegDaBZHQJXrVmDlHSZ1fZQoaAZoCWgPQwivCP63koVlQJSGlFKUaBVN6ANoFkdAle0qnFYMfHV9lChoBmgJaA9DCPkP6bcv1mBAlIaUUpRoFU3oA2gWR0CV7istCiRGdX2UKGgGaAloD0MIQuxMoTMmcECUhpRSlGgVTU4CaBZHQJXumR8twrF1fZQoaAZoCWgPQwjbFI+LaghfQJSGlFKUaBVN6ANoFkdAlfA1ZowmFHV9lChoBmgJaA9DCGe0VUlkZm1AlIaUUpRoFU3oAmgWR0CV9W3u/k/9dX2UKGgGaAloD0MIyXTo9DyZcECUhpRSlGgVTRQCaBZHQJYGOD5CWu51fZQoaAZoCWgPQwhFLc2tkNVvQJSGlFKUaBVNygFoFkdAlgZNvbXYlXV9lChoBmgJaA9DCLqGGRoPE3BAlIaUUpRoFU2YAWgWR0CWB2CfYjB3dX2UKGgGaAloD0MIPpepSXAVbkCUhpRSlGgVTSkCaBZHQJYHkhA4XGh1fZQoaAZoCWgPQwglBoGVQ/RvQJSGlFKUaBVN1QJoFkdAlhF2jCYTkHV9lChoBmgJaA9DCAqi7gMQLGFAlIaUUpRoFU3oA2gWR0CWE1tCzC1rdX2UKGgGaAloD0MIsyRATa1FZUCUhpRSlGgVTegDaBZHQJYUIXzlLe11fZQoaAZoCWgPQwiB7PXuD2diQJSGlFKUaBVN6ANoFkdAlhbU0rK/23V9lChoBmgJaA9DCGFSfHzCC2NAlIaUUpRoFU3oA2gWR0CWGa15jYqYdX2UKGgGaAloD0MIZ/M4DCZgcECUhpRSlGgVTcsCaBZHQJYb211GLDR1fZQoaAZoCWgPQwjoFORnI1lgQJSGlFKUaBVN6ANoFkdAliEiNbTts3V9lChoBmgJaA9DCKGEmbb/MHFAlIaUUpRoFU3NAWgWR0CWIdgR9PUKdX2UKGgGaAloD0MISS2UTE7FSECUhpRSlGgVS8hoFkdAliJfuCwr2HV9lChoBmgJaA9DCAOy17s/IWBAlIaUUpRoFU3oA2gWR0CWJBIMSbpedX2UKGgGaAloD0MI7s9FQ8ZTPkCUhpRSlGgVS9ZoFkdAliXTZQHiWHV9lChoBmgJaA9DCAsOL4hID2RAlIaUUpRoFU3oA2gWR0CWJdQTVUdadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 170, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
mb-LunarLander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87768e14769f746780c4548de406bf3f2224fc4a6bc6340aab9ca1a1adf59077
|
3 |
+
size 144101
|
mb-LunarLander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
mb-LunarLander/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7feebf588170>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feebf588200>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feebf588290>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feebf588320>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7feebf5883b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7feebf588440>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feebf5884d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7feebf588560>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feebf5885f0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feebf588680>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7feebf588710>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7feebf5de210>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652208976.893236,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABPPKb6aQoE+Od7BPQ3kbL7wuP87LYVevQAAAAAAAAAAmnyxvFwPbjkXhTM6s+ybtRxhcLuIxFa5AACAPwAAgD+aiOk8lnq4PxK5Mz+ATZg+4g+vvPNUKr0AAAAAAAAAANqVvz3DvQu6ZpzLur6kN7XaCJu7nLGqNAAAAAAAAIA/On9cPt/v3jwGukk6WVgPOcuAdj7CxpC5AACAPwAAgD+TWUS+01KPPwjP6L5x/+K+wthVvkx9C74AAAAAAAAAAHogXz6DEma8c9++OobCu7iUM9C9eg3nuQAAgD8AAIA/QE2RvXPoUD9NKR+9nUnmvqejdb3Kx0k9AAAAAAAAAABg3p0+VpwqPxg+SD03Mp2+oAIiPiqoN70AAAAAAAAAAINGhj69/iO9rZogOwXf5Lmn3ZG+zvZZugAAgD8AAIA/mqlzvpTiNb1IJAm7V+S+uaEjnT6yV4Y6AACAPwAAgD/Nxrk8IeqtP0hCDj9kmR6/SbllvNSkJbwAAAAAAAAAAOaahj3bykI/u5T/PS+0wb7TDD490icbvQAAAAAAAAAAmpSevMMVIjmA/OI6zbjXNati8box4we6AACAPwAAgD8zc4y7rof1uGqf/rlLfnQ1bEmbOwrC6LQAAIA/AACAPzOblbwKhzu5EGTUNmxKAjKV9k667fP8tQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1jpxOd6oZECUhpRSlIwBbJRN6AOMAXSUR0CUPP9bor4GdX2UKGgGaAloD0MI2BAcl3GfYkCUhpRSlGgVTegDaBZHQJRCIPd2xIJ1fZQoaAZoCWgPQwi31awzvv8XQJSGlFKUaBVL+WgWR0CUQowJw84hdX2UKGgGaAloD0MIS8rd5/j/ZECUhpRSlGgVTegDaBZHQJRD4XXRPXV1fZQoaAZoCWgPQwgld9hEZphkQJSGlFKUaBVN6ANoFkdAlEkWmgrYoXV9lChoBmgJaA9DCNdppKXyoFxAlIaUUpRoFU3oA2gWR0CUSSm29crzdX2UKGgGaAloD0MIjlvMz438YECUhpRSlGgVTegDaBZHQJRNVfE4vOB1fZQoaAZoCWgPQwjJkjmWd2U5QJSGlFKUaBVNFQFoFkdAlFL9B0IToXV9lChoBmgJaA9DCG6kbJG0TmhAlIaUUpRoFU3oA2gWR0CUViSJTER8dX2UKGgGaAloD0MIK061FmZRXkCUhpRSlGgVTegDaBZHQJRaAcHWz4V1fZQoaAZoCWgPQwjjUSrhCahfQJSGlFKUaBVN6ANoFkdAlF5higCfYnV9lChoBmgJaA9DCPKyJhb4BkNAlIaUUpRoFU0BAWgWR0CUYydQO4G2dX2UKGgGaAloD0MIhzWVRWE2YkCUhpRSlGgVTegDaBZHQJTTvifg75p1fZQoaAZoCWgPQwhv2LYos8FdQJSGlFKUaBVN6ANoFkdAlNQzTz/ZNHV9lChoBmgJaA9DCAZLdQGvFGRAlIaUUpRoFU3oA2gWR0CU1Vri2lVMdX2UKGgGaAloD0MITtNnB1wiZUCUhpRSlGgVTegDaBZHQJTWN+uvECN1fZQoaAZoCWgPQwiRYKqZNf5pQJSGlFKUaBVNfAJoFkdAlNhpElVtGnV9lChoBmgJaA9DCB+eJciIEWFAlIaUUpRoFU3oA2gWR0CU3L/8EV32dX2UKGgGaAloD0MIozuInSn3YECUhpRSlGgVTegDaBZHQJTe+NJe3QV1fZQoaAZoCWgPQwj4UnjQ7IZcQJSGlFKUaBVN6ANoFkdAlOHMYVIqb3V9lChoBmgJaA9DCCMT8GskvGtAlIaUUpRoFU3GA2gWR0CU5vEEC/47dX2UKGgGaAloD0MIXoB9dOrDbkCUhpRSlGgVTSQBaBZHQJTneITGo751fZQoaAZoCWgPQwizCwbXXEVmQJSGlFKUaBVN6ANoFkdAlOeXwgDA8HV9lChoBmgJaA9DCPj9mxenUG9AlIaUUpRoFU1EAmgWR0CU6UB7/n4gdX2UKGgGaAloD0MIMiHmkiqkbkCUhpRSlGgVTcYDaBZHQJTr4H/tICl1fZQoaAZoCWgPQwiuLTwvFYNgQJSGlFKUaBVN6ANoFkdAlPI/+wTufHV9lChoBmgJaA9DCMhhMH/Fr3JAlIaUUpRoFU1MAmgWR0CU+O42S+xodX2UKGgGaAloD0MIr7SM1HvtZECUhpRSlGgVTegDaBZHQJT7tr8BMi91fZQoaAZoCWgPQwhjfm5oSvVhQJSGlFKUaBVN6ANoFkdAlP/8wlByCHV9lChoBmgJaA9DCMb83NAUlGJAlIaUUpRoFU3oA2gWR0CVCjof0VafdX2UKGgGaAloD0MIdLaA0HruXkCUhpRSlGgVTegDaBZHQJUTZ6dDpkh1fZQoaAZoCWgPQwhV+DO8WQRhQJSGlFKUaBVN6ANoFkdAlRPXxri2lXV9lChoBmgJaA9DCNs1Ia0xCV9AlIaUUpRoFU3oA2gWR0CVGEVEuxr0dX2UKGgGaAloD0MIvD/eq1ZOYkCUhpRSlGgVTegDaBZHQJUcwAdXDFZ1fZQoaAZoCWgPQwjn4JnQJJNhQJSGlFKUaBVN6ANoFkdAlR7Lcj7hvXV9lChoBmgJaA9DCOjaF9ALsGBAlIaUUpRoFU3oA2gWR0CVIXdxyXD4dX2UKGgGaAloD0MIpaFGIUmNYUCUhpRSlGgVTegDaBZHQJUmFkQPI4l1fZQoaAZoCWgPQwh9QQsJGIxbQJSGlFKUaBVN6ANoFkdAlSaDOcDr7nV9lChoBmgJaA9DCFa6u86GkmNAlIaUUpRoFU3oA2gWR0CVJqFN+LFXdX2UKGgGaAloD0MIMbPPYxStZ0CUhpRSlGgVTegDaBZHQJUoCx/ustF1fZQoaAZoCWgPQwjuXBjpxZtjQJSGlFKUaBVN6ANoFkdAlSphUrCm/HV9lChoBmgJaA9DCMk9Xd0xoHBAlIaUUpRoFU2lAWgWR0CVKtv0RODbdX2UKGgGaAloD0MIW7BUF3BXY0CUhpRSlGgVTegDaBZHQJUv6FGoaUB1fZQoaAZoCWgPQwjLoUW28/djQJSGlFKUaBVN6ANoFkdAlTW8sYl6aHV9lChoBmgJaA9DCMwJ2uTwbWJAlIaUUpRoFU3oA2gWR0CVOCHT7VJ+dX2UKGgGaAloD0MIR8uBHmqBb0CUhpRSlGgVTZECaBZHQJU46LWI42l1fZQoaAZoCWgPQwhiSbn7nDxiQJSGlFKUaBVN6ANoFkdAlTvVdPci4nV9lChoBmgJaA9DCLOVl/xPtmpAlIaUUpRoFU3SAWgWR0CVQ6efqX4TdX2UKGgGaAloD0MItg95y1WAbkCUhpRSlGgVTUcBaBZHQJVEieiBXjl1fZQoaAZoCWgPQwgDP6phv4VfQJSGlFKUaBVN6ANoFkdAlUW9jCpFTnV9lChoBmgJaA9DCM6pZACoIhBAlIaUUpRoFUvraBZHQJVHQNRWLgp1fZQoaAZoCWgPQwhOK4VArnBvQJSGlFKUaBVNhQJoFkdAlbNJ8F6iTXV9lChoBmgJaA9DCLTIdr6fWW5AlIaUUpRoFU0SA2gWR0CVs/AkLQXzdX2UKGgGaAloD0MIaahRSDJ/bUCUhpRSlGgVTV4CaBZHQJW2FuAI6bR1fZQoaAZoCWgPQwiHpuz0A9duQJSGlFKUaBVNaQJoFkdAlbdPYBeXzHV9lChoBmgJaA9DCFH1K52PsnBAlIaUUpRoFU3LAmgWR0CVuBP6be/IdX2UKGgGaAloD0MIpI6Oq5GKX0CUhpRSlGgVTegDaBZHQJW5zAdn0051fZQoaAZoCWgPQwhcdoh/2CI2QJSGlFKUaBVNCgFoFkdAlbqLTc6/7HV9lChoBmgJaA9DCDz2s1hKHHBAlIaUUpRoFU1eA2gWR0CVuvB2wFC+dX2UKGgGaAloD0MI+5EiMix1bECUhpRSlGgVTeIBaBZHQJW8+LQ5WBB1fZQoaAZoCWgPQwik+s4vyt5kQJSGlFKUaBVN6ANoFkdAlb2Xwb2lEnV9lChoBmgJaA9DCElnYORlsVtAlIaUUpRoFU3oA2gWR0CVxsX/YJ3QdX2UKGgGaAloD0MIUUoIVtUyb0CUhpRSlGgVTVoBaBZHQJXNVp5/smh1fZQoaAZoCWgPQwjMC7CPTqtwQJSGlFKUaBVNNwFoFkdAlc45QUHpr3V9lChoBmgJaA9DCHVbIhdckHBAlIaUUpRoFU2fAWgWR0CV0d752yLRdX2UKGgGaAloD0MIuaXVkHhjcUCUhpRSlGgVTd8BaBZHQJXSbo+wC8x1fZQoaAZoCWgPQwj6QV2kUG1kQJSGlFKUaBVN6ANoFkdAldbFSwW30HV9lChoBmgJaA9DCBB1H4DUz25AlIaUUpRoFU0lA2gWR0CV2MyquKXOdX2UKGgGaAloD0MIAb7bvPH6bECUhpRSlGgVTR4DaBZHQJXZdYJVsDZ1fZQoaAZoCWgPQwgBv0aSoFtvQJSGlFKUaBVNdgFoFkdAldv2KZUkwHV9lChoBmgJaA9DCDlkA+ni0mNAlIaUUpRoFU3oA2gWR0CV3Cpz90ihdX2UKGgGaAloD0MI0LhwICRTQUCUhpRSlGgVS+NoFkdAld5+jh1klXV9lChoBmgJaA9DCNcYdELoLmRAlIaUUpRoFU3oA2gWR0CV5hd5IH1OdX2UKGgGaAloD0MIE9OFWD2+cECUhpRSlGgVTd8CaBZHQJXmiRJVbRp1fZQoaAZoCWgPQwjKGB9mL+ZtQJSGlFKUaBVNIwFoFkdAlec0Ao5PuXV9lChoBmgJaA9DCHYXKCkw925AlIaUUpRoFU2CAWgWR0CV50VAzHjqdX2UKGgGaAloD0MIR5IgXAFRNkCUhpRSlGgVS+NoFkdAlekS8zyjHnV9lChoBmgJaA9DCEt0llkEB2BAlIaUUpRoFU3oA2gWR0CV6tJ2+wkgdX2UKGgGaAloD0MIfcucLos8Y0CUhpRSlGgVTegDaBZHQJXrVmDlHSZ1fZQoaAZoCWgPQwivCP63koVlQJSGlFKUaBVN6ANoFkdAle0qnFYMfHV9lChoBmgJaA9DCPkP6bcv1mBAlIaUUpRoFU3oA2gWR0CV7istCiRGdX2UKGgGaAloD0MIQuxMoTMmcECUhpRSlGgVTU4CaBZHQJXumR8twrF1fZQoaAZoCWgPQwjbFI+LaghfQJSGlFKUaBVN6ANoFkdAlfA1ZowmFHV9lChoBmgJaA9DCGe0VUlkZm1AlIaUUpRoFU3oAmgWR0CV9W3u/k/9dX2UKGgGaAloD0MIyXTo9DyZcECUhpRSlGgVTRQCaBZHQJYGOD5CWu51fZQoaAZoCWgPQwhFLc2tkNVvQJSGlFKUaBVNygFoFkdAlgZNvbXYlXV9lChoBmgJaA9DCLqGGRoPE3BAlIaUUpRoFU2YAWgWR0CWB2CfYjB3dX2UKGgGaAloD0MIPpepSXAVbkCUhpRSlGgVTSkCaBZHQJYHkhA4XGh1fZQoaAZoCWgPQwglBoGVQ/RvQJSGlFKUaBVN1QJoFkdAlhF2jCYTkHV9lChoBmgJaA9DCAqi7gMQLGFAlIaUUpRoFU3oA2gWR0CWE1tCzC1rdX2UKGgGaAloD0MIsyRATa1FZUCUhpRSlGgVTegDaBZHQJYUIXzlLe11fZQoaAZoCWgPQwiB7PXuD2diQJSGlFKUaBVN6ANoFkdAlhbU0rK/23V9lChoBmgJaA9DCGFSfHzCC2NAlIaUUpRoFU3oA2gWR0CWGa15jYqYdX2UKGgGaAloD0MIZ/M4DCZgcECUhpRSlGgVTcsCaBZHQJYb211GLDR1fZQoaAZoCWgPQwjoFORnI1lgQJSGlFKUaBVN6ANoFkdAliEiNbTts3V9lChoBmgJaA9DCKGEmbb/MHFAlIaUUpRoFU3NAWgWR0CWIdgR9PUKdX2UKGgGaAloD0MISS2UTE7FSECUhpRSlGgVS8hoFkdAliJfuCwr2HV9lChoBmgJaA9DCAOy17s/IWBAlIaUUpRoFU3oA2gWR0CWJBIMSbpedX2UKGgGaAloD0MI7s9FQ8ZTPkCUhpRSlGgVS9ZoFkdAliXTZQHiWHV9lChoBmgJaA9DCAsOL4hID2RAlIaUUpRoFU3oA2gWR0CWJdQTVUdadWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 170,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
mb-LunarLander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da64fd7503e4d37abec3eb5805deef920f5bf33188dad71e4c7e6a6380f4b72a
|
3 |
+
size 84893
|
mb-LunarLander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc54741eee05ed16025b62e2ce1620f55c18c502139379782d010c3cbd42524a
|
3 |
+
size 43201
|
mb-LunarLander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
mb-LunarLander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b695347de48ff42120d86ae384b087eba403d112723fb73ff22a250fdc8611c4
|
3 |
+
size 244474
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 224.9585122052975, "std_reward": 73.06449919747753, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T19:16:57.662354"}
|