from typing import Optional import torch from torch import nn from torch.nn.utils import weight_norm from vocos.modules import ConvNeXtBlock, ResBlock1, AdaLayerNorm class Backbone(nn.Module): """Base class for the generator's backbone. It preserves the same temporal resolution across all layers.""" def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: """ Args: x (Tensor): Input tensor of shape (B, C, L), where B is the batch size, C denotes output features, and L is the sequence length. Returns: Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length, and H denotes the model dimension. """ raise NotImplementedError("Subclasses must implement the forward method.") class VocosBackbone(Backbone): """ Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization Args: input_channels (int): Number of input features channels. dim (int): Hidden dimension of the model. intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock. num_layers (int): Number of ConvNeXtBlock layers. layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`. adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. None means non-conditional model. Defaults to None. """ def __init__( self, input_channels: int, dim: int, intermediate_dim: int, num_layers: int, layer_scale_init_value: Optional[float] = None, adanorm_num_embeddings: Optional[int] = None, ckpt: Optional[str] = None, ): super().__init__() self.input_channels = input_channels self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3) self.adanorm = adanorm_num_embeddings is not None if adanorm_num_embeddings: self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6) else: self.norm = nn.LayerNorm(dim, eps=1e-6) layer_scale_init_value = layer_scale_init_value or 1 / num_layers self.convnext = nn.ModuleList( [ ConvNeXtBlock( dim=dim, intermediate_dim=intermediate_dim, layer_scale_init_value=layer_scale_init_value, adanorm_num_embeddings=adanorm_num_embeddings, ) for _ in range(num_layers) ] ) self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6) # print out self's state dict if ckpt is not None: state_dict = torch.load(ckpt, map_location='cpu') state_dict = self._fuzzy_load_state_dict(state_dict) self.load_state_dict(state_dict) self.apply(self._init_weights) def _fuzzy_load_state_dict(self, state_dict): def _get_key(key): return key.split('backbone.')[-1] new_state_dict = {} for k, v in state_dict.items(): if k.startswith('backbone'): if v.shape == self.state_dict()[_get_key(k)].shape: new_state_dict[_get_key(k)] = v else: new_state_dict[_get_key(k)] = self.state_dict()[_get_key(k)] nn.init.trunc_normal_(new_state_dict[_get_key(k)], std=0.02) nn.init.constant_(new_state_dict[_get_key(k)], 0) return new_state_dict def _init_weights(self, m): if isinstance(m, (nn.Conv1d, nn.Linear)): nn.init.trunc_normal_(m.weight, std=0.02) nn.init.constant_(m.bias, 0) def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: bandwidth_id = kwargs.get('bandwidth_id', None) x = self.embed(x) if self.adanorm: assert bandwidth_id is not None x = self.norm(x.transpose(1, 2), cond_embedding_id=bandwidth_id) else: x = self.norm(x.transpose(1, 2)) x = x.transpose(1, 2) for conv_block in self.convnext: x = conv_block(x, cond_embedding_id=bandwidth_id) x = self.final_layer_norm(x.transpose(1, 2)) return x class VocosResNetBackbone(Backbone): """ Vocos backbone module built with ResBlocks. Args: input_channels (int): Number of input features channels. dim (int): Hidden dimension of the model. num_blocks (int): Number of ResBlock1 blocks. layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None. """ def __init__( self, input_channels, dim, num_blocks, layer_scale_init_value=None, ): super().__init__() self.input_channels = input_channels self.embed = weight_norm(nn.Conv1d(input_channels, dim, kernel_size=3, padding=1)) layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3 self.resnet = nn.Sequential( *[ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value) for _ in range(num_blocks)] ) def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: x = self.embed(x) x = self.resnet(x) x = x.transpose(1, 2) return x if __name__ == '__main__': # Define the model model = VocosBackbone( input_channels=1024, dim=512, intermediate_dim=1536, num_layers=8, ckpt="/root/OpenMusicVoco/vocos/pretrained.pth" ) # Generate some random input x = torch.randn(2, 1024, 100) # Forward pass output = model(x) print(output.shape) # torch.Size([2, 100, 512])