# Copyright (c) ByteDance, Inc. and its affiliates. # Copyright (c) Chutong Meng # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Based on fairseq (https://github.com/facebookresearch/fairseq) import logging import torch import torch.nn.functional as F from fairseq import tasks from fairseq.checkpoint_utils import load_checkpoint_to_cpu from fairseq.data.audio.audio_utils import get_features_or_waveform from omegaconf import OmegaConf from data2vec_audio import Data2VecAudioModel logger = logging.getLogger("dump_feature") class Data2vecFeatureReader(object): def __init__(self, ckpt_path: str, layer: int, device: str, max_chunk=1600000): state = load_checkpoint_to_cpu(ckpt_path) cfg = state["cfg"] # load task task = tasks.setup_task(cfg.task, from_checkpoint=True) task.load_state_dict(state["task_state"]) # load model config if "layer_type" not in cfg.model: # fix a missing key model_config = {k: v for k, v in cfg.model.items()} model_config["layer_type"] = "transformer" model_config = OmegaConf.create(model_config) else: model_config = cfg.model # fix param name in the state state["model"]["final_proj.weight"] = state["model"].pop("final_proj.0.weight") state["model"]["final_proj.bias"] = state["model"].pop("final_proj.0.bias") del state["model"]["_ema"] # load model model = Data2VecAudioModel.build_model(model_config) model.load_state_dict( state["model"], strict=True, model_cfg=model_config ) self.device = device logger.info(f"device = {self.device}") self.model = model.eval().to(self.device) self.task = task self.layer = layer - 1 # make it 1-based self.max_chunk = max_chunk logger.info(f"TASK CONFIG:\n{self.task.cfg}") logger.info(f" max_chunk = {self.max_chunk}") def read_audio(self, path, ref_len=None): wav = get_features_or_waveform(path, need_waveform=True, use_sample_rate=self.task.cfg.sample_rate) if wav.ndim == 2: wav = wav.mean(-1) assert wav.ndim == 1, wav.ndim if ref_len is not None and abs(ref_len - len(wav)) > 160: logger.warning(f"ref {ref_len} != read {len(wav)} ({path})") return wav def get_feats(self, path, ref_len=None): x = self.read_audio(path, ref_len=ref_len) with torch.no_grad(): x = torch.from_numpy(x).float().to(self.device) if self.task.cfg.normalize: x = F.layer_norm(x, x.shape) x = x.view(1, -1) feat = [] for start in range(0, x.size(1), self.max_chunk): x_chunk = x[:, start: start + self.max_chunk] res = self.model.extract_features( source=x_chunk, padding_mask=None, mask=False, layer=self.layer, ) feat_chunk = res["x"] feat.append(feat_chunk) return torch.cat(feat, 1).squeeze(0)