|
import numpy as np |
|
import scipy |
|
import torch |
|
from torch import nn, view_as_real, view_as_complex |
|
|
|
|
|
class ISTFT(nn.Module): |
|
""" |
|
Custom implementation of ISTFT since torch.istft doesn't allow custom padding (other than `center=True`) with |
|
windowing. This is because the NOLA (Nonzero Overlap Add) check fails at the edges. |
|
See issue: https://github.com/pytorch/pytorch/issues/62323 |
|
Specifically, in the context of neural vocoding we are interested in "same" padding analogous to CNNs. |
|
The NOLA constraint is met as we trim padded samples anyway. |
|
|
|
Args: |
|
n_fft (int): Size of Fourier transform. |
|
hop_length (int): The distance between neighboring sliding window frames. |
|
win_length (int): The size of window frame and STFT filter. |
|
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". |
|
""" |
|
|
|
def __init__(self, n_fft: int, hop_length: int, win_length: int, padding: str = "same"): |
|
super().__init__() |
|
if padding not in ["center", "same"]: |
|
raise ValueError("Padding must be 'center' or 'same'.") |
|
self.padding = padding |
|
self.n_fft = n_fft |
|
self.hop_length = hop_length |
|
self.win_length = win_length |
|
window = torch.hann_window(win_length) |
|
self.register_buffer("window", window) |
|
|
|
def forward(self, spec: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Compute the Inverse Short Time Fourier Transform (ISTFT) of a complex spectrogram. |
|
|
|
Args: |
|
spec (Tensor): Input complex spectrogram of shape (B, N, T), where B is the batch size, |
|
N is the number of frequency bins, and T is the number of time frames. |
|
|
|
Returns: |
|
Tensor: Reconstructed time-domain signal of shape (B, L), where L is the length of the output signal. |
|
""" |
|
if self.padding == "center": |
|
|
|
return torch.istft(spec, self.n_fft, self.hop_length, self.win_length, self.window, center=True) |
|
elif self.padding == "same": |
|
pad = (self.win_length - self.hop_length) // 2 |
|
else: |
|
raise ValueError("Padding must be 'center' or 'same'.") |
|
|
|
assert spec.dim() == 3, "Expected a 3D tensor as input" |
|
B, N, T = spec.shape |
|
|
|
|
|
ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward") |
|
ifft = ifft * self.window[None, :, None] |
|
|
|
|
|
output_size = (T - 1) * self.hop_length + self.win_length |
|
y = torch.nn.functional.fold( |
|
ifft, output_size=(1, output_size), kernel_size=(1, self.win_length), stride=(1, self.hop_length), |
|
)[:, 0, 0, pad:-pad] |
|
|
|
|
|
window_sq = self.window.square().expand(1, T, -1).transpose(1, 2) |
|
window_envelope = torch.nn.functional.fold( |
|
window_sq, output_size=(1, output_size), kernel_size=(1, self.win_length), stride=(1, self.hop_length), |
|
).squeeze()[pad:-pad] |
|
|
|
|
|
assert (window_envelope > 1e-11).all() |
|
y = y / window_envelope |
|
|
|
return y |
|
|
|
|
|
class MDCT(nn.Module): |
|
""" |
|
Modified Discrete Cosine Transform (MDCT) module. |
|
|
|
Args: |
|
frame_len (int): Length of the MDCT frame. |
|
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". |
|
""" |
|
|
|
def __init__(self, frame_len: int, padding: str = "same"): |
|
super().__init__() |
|
if padding not in ["center", "same"]: |
|
raise ValueError("Padding must be 'center' or 'same'.") |
|
self.padding = padding |
|
self.frame_len = frame_len |
|
N = frame_len // 2 |
|
n0 = (N + 1) / 2 |
|
window = torch.from_numpy(scipy.signal.cosine(frame_len)).float() |
|
self.register_buffer("window", window) |
|
|
|
pre_twiddle = torch.exp(-1j * torch.pi * torch.arange(frame_len) / frame_len) |
|
post_twiddle = torch.exp(-1j * torch.pi * n0 * (torch.arange(N) + 0.5) / N) |
|
|
|
|
|
self.register_buffer("pre_twiddle", view_as_real(pre_twiddle)) |
|
self.register_buffer("post_twiddle", view_as_real(post_twiddle)) |
|
|
|
def forward(self, audio: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Apply the Modified Discrete Cosine Transform (MDCT) to the input audio. |
|
|
|
Args: |
|
audio (Tensor): Input audio waveform of shape (B, T), where B is the batch size |
|
and T is the length of the audio. |
|
|
|
Returns: |
|
Tensor: MDCT coefficients of shape (B, L, N), where L is the number of output frames |
|
and N is the number of frequency bins. |
|
""" |
|
if self.padding == "center": |
|
audio = torch.nn.functional.pad(audio, (self.frame_len // 2, self.frame_len // 2)) |
|
elif self.padding == "same": |
|
|
|
audio = torch.nn.functional.pad(audio, (self.frame_len // 4, self.frame_len // 4)) |
|
else: |
|
raise ValueError("Padding must be 'center' or 'same'.") |
|
|
|
x = audio.unfold(-1, self.frame_len, self.frame_len // 2) |
|
N = self.frame_len // 2 |
|
x = x * self.window.expand(x.shape) |
|
X = torch.fft.fft(x * view_as_complex(self.pre_twiddle).expand(x.shape), dim=-1)[..., :N] |
|
res = X * view_as_complex(self.post_twiddle).expand(X.shape) * np.sqrt(1 / N) |
|
return torch.real(res) * np.sqrt(2) |
|
|
|
|
|
class IMDCT(nn.Module): |
|
""" |
|
Inverse Modified Discrete Cosine Transform (IMDCT) module. |
|
|
|
Args: |
|
frame_len (int): Length of the MDCT frame. |
|
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". |
|
""" |
|
|
|
def __init__(self, frame_len: int, padding: str = "same"): |
|
super().__init__() |
|
if padding not in ["center", "same"]: |
|
raise ValueError("Padding must be 'center' or 'same'.") |
|
self.padding = padding |
|
self.frame_len = frame_len |
|
N = frame_len // 2 |
|
n0 = (N + 1) / 2 |
|
window = torch.from_numpy(scipy.signal.cosine(frame_len)).float() |
|
self.register_buffer("window", window) |
|
|
|
pre_twiddle = torch.exp(1j * torch.pi * n0 * torch.arange(N * 2) / N) |
|
post_twiddle = torch.exp(1j * torch.pi * (torch.arange(N * 2) + n0) / (N * 2)) |
|
self.register_buffer("pre_twiddle", view_as_real(pre_twiddle)) |
|
self.register_buffer("post_twiddle", view_as_real(post_twiddle)) |
|
|
|
def forward(self, X: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Apply the Inverse Modified Discrete Cosine Transform (IMDCT) to the input MDCT coefficients. |
|
|
|
Args: |
|
X (Tensor): Input MDCT coefficients of shape (B, L, N), where B is the batch size, |
|
L is the number of frames, and N is the number of frequency bins. |
|
|
|
Returns: |
|
Tensor: Reconstructed audio waveform of shape (B, T), where T is the length of the audio. |
|
""" |
|
B, L, N = X.shape |
|
Y = torch.zeros((B, L, N * 2), dtype=X.dtype, device=X.device) |
|
Y[..., :N] = X |
|
Y[..., N:] = -1 * torch.conj(torch.flip(X, dims=(-1,))) |
|
y = torch.fft.ifft(Y * view_as_complex(self.pre_twiddle).expand(Y.shape), dim=-1) |
|
y = torch.real(y * view_as_complex(self.post_twiddle).expand(y.shape)) * np.sqrt(N) * np.sqrt(2) |
|
result = y * self.window.expand(y.shape) |
|
output_size = (1, (L + 1) * N) |
|
audio = torch.nn.functional.fold( |
|
result.transpose(1, 2), |
|
output_size=output_size, |
|
kernel_size=(1, self.frame_len), |
|
stride=(1, self.frame_len // 2), |
|
)[:, 0, 0, :] |
|
|
|
if self.padding == "center": |
|
pad = self.frame_len // 2 |
|
elif self.padding == "same": |
|
pad = self.frame_len // 4 |
|
else: |
|
raise ValueError("Padding must be 'center' or 'same'.") |
|
|
|
audio = audio[:, pad:-pad] |
|
return audio |
|
|