|
import matplotlib |
|
import numpy as np |
|
import torch |
|
from matplotlib import pyplot as plt |
|
from pytorch_lightning import Callback |
|
|
|
matplotlib.use("Agg") |
|
|
|
|
|
def save_figure_to_numpy(fig: plt.Figure) -> np.ndarray: |
|
""" |
|
Save a matplotlib figure to a numpy array. |
|
|
|
Args: |
|
fig (Figure): Matplotlib figure object. |
|
|
|
Returns: |
|
ndarray: Numpy array representing the figure. |
|
""" |
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") |
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) |
|
return data |
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram: np.ndarray) -> np.ndarray: |
|
""" |
|
Plot a spectrogram and convert it to a numpy array. |
|
|
|
Args: |
|
spectrogram (ndarray): Spectrogram data. |
|
|
|
Returns: |
|
ndarray: Numpy array representing the plotted spectrogram. |
|
""" |
|
spectrogram = spectrogram.astype(np.float32) |
|
fig, ax = plt.subplots(figsize=(12, 3)) |
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") |
|
plt.colorbar(im, ax=ax) |
|
plt.xlabel("Frames") |
|
plt.ylabel("Channels") |
|
plt.tight_layout() |
|
|
|
fig.canvas.draw() |
|
data = save_figure_to_numpy(fig) |
|
plt.close() |
|
return data |
|
|
|
|
|
class GradNormCallback(Callback): |
|
""" |
|
Callback to log the gradient norm. |
|
""" |
|
|
|
def on_after_backward(self, trainer, model): |
|
model.log("grad_norm", gradient_norm(model)) |
|
|
|
|
|
def gradient_norm(model: torch.nn.Module, norm_type: float = 2.0) -> torch.Tensor: |
|
""" |
|
Compute the gradient norm. |
|
|
|
Args: |
|
model (Module): PyTorch model. |
|
norm_type (float, optional): Type of the norm. Defaults to 2.0. |
|
|
|
Returns: |
|
Tensor: Gradient norm. |
|
""" |
|
grads = [p.grad for p in model.parameters() if p.grad is not None] |
|
total_norm = torch.norm(torch.stack([torch.norm(g.detach(), norm_type) for g in grads]), norm_type) |
|
return total_norm |
|
|