File size: 7,713 Bytes
fe781a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# Copyright (c) ByteDance, Inc. and its affiliates.
# Copyright (c) Chutong Meng
#
# This source code is licensed under the CC BY-NC license found in the
# LICENSE file in the root directory of this source tree.
# Based on AudioDec (https://github.com/facebookresearch/AudioDec)
import argparse
import logging
import os
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
)
logger = logging.getLogger("repcodec_train") # init logger before other modules
import random
import numpy as np
import torch
import yaml
from torch.utils.data import DataLoader
from dataloader import ReprDataset, ReprCollater
from losses.repr_reconstruct_loss import ReprReconstructLoss
from repcodec.RepCodec import RepCodec
from trainer.autoencoder import Trainer
class TrainMain:
def __init__(self, args):
# Fix seed and make backends deterministic
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if not torch.cuda.is_available():
self.device = torch.device('cpu')
logger.info(f"device: cpu")
else:
self.device = torch.device('cuda:0') # only supports single gpu for now
logger.info(f"device: gpu")
torch.cuda.manual_seed_all(args.seed)
if args.disable_cudnn == "False":
torch.backends.cudnn.benchmark = True
# initialize config
with open(args.config, 'r') as f:
self.config = yaml.load(f, Loader=yaml.FullLoader)
self.config.update(vars(args))
# initialize model folder
expdir = os.path.join(args.exp_root, args.tag)
os.makedirs(expdir, exist_ok=True)
self.config["outdir"] = expdir
# save config
with open(os.path.join(expdir, "config.yml"), "w") as f:
yaml.dump(self.config, f, Dumper=yaml.Dumper)
for key, value in self.config.items():
logger.info(f"{key} = {value}")
# initialize attribute
self.resume: str = args.resume
self.data_loader = None
self.model = None
self.optimizer = None
self.scheduler = None
self.criterion = None
self.trainer = None
# initialize batch_length
self.batch_length: int = self.config['batch_length']
self.data_path: str = self.config['data']['path']
def initialize_data_loader(self):
train_set = self._build_dataset("train")
valid_set = self._build_dataset("valid")
collater = ReprCollater()
logger.info(f"The number of training files = {len(train_set)}.")
logger.info(f"The number of validation files = {len(valid_set)}.")
dataset = {"train": train_set, "dev": valid_set}
self._set_data_loader(dataset, collater)
def define_model_optimizer_scheduler(self):
# model arch
self.model = {
"repcodec": RepCodec(**self.config["model_params"]).to(self.device)
}
logger.info(f"Model Arch:\n{self.model['repcodec']}")
# opt
optimizer_class = getattr(
torch.optim,
self.config["model_optimizer_type"]
)
self.optimizer = {
"repcodec": optimizer_class(
self.model["repcodec"].parameters(),
**self.config["model_optimizer_params"]
)
}
# scheduler
scheduler_class = getattr(
torch.optim.lr_scheduler,
self.config.get("model_scheduler_type", "StepLR"),
)
self.scheduler = {
"repcodec": scheduler_class(
optimizer=self.optimizer["repcodec"],
**self.config["model_scheduler_params"]
)
}
def define_criterion(self):
self.criterion = {
"repr_reconstruct_loss": ReprReconstructLoss(
**self.config.get("repr_reconstruct_loss_params", {}),
).to(self.device)
}
def define_trainer(self):
self.trainer = Trainer(
steps=0,
epochs=0,
data_loader=self.data_loader,
model=self.model,
criterion=self.criterion,
optimizer=self.optimizer,
scheduler=self.scheduler,
config=self.config,
device=self.device
)
def initialize_model(self):
initial = self.config.get("initial", "")
if os.path.exists(self.resume): # resume from trained model
self.trainer.load_checkpoint(self.resume)
logger.info(f"Successfully resumed from {self.resume}.")
elif os.path.exists(initial): # initial new model with the pre-trained model
self.trainer.load_checkpoint(initial, load_only_params=True)
logger.info(f"Successfully initialize parameters from {initial}.")
else:
logger.info("Train from scrach")
def run(self):
assert self.trainer is not None
self.trainer: Trainer
try:
logger.info(f"The current training step: {self.trainer.steps}")
self.trainer.train_max_steps = self.config["train_max_steps"]
if not self.trainer._check_train_finish():
self.trainer.run()
finally:
self.trainer.save_checkpoint(
os.path.join(self.config["outdir"], f"checkpoint-{self.trainer.steps}steps.pkl")
)
logger.info(f"Successfully saved checkpoint @ {self.trainer.steps}steps.")
def _build_dataset(
self, subset: str
) -> ReprDataset:
data_dir = os.path.join(
self.data_path, self.config['data']['subset'][subset]
)
params = {
"data_dir": data_dir,
"batch_len": self.batch_length
}
return ReprDataset(**params)
def _set_data_loader(self, dataset, collater):
self.data_loader = {
"train": DataLoader(
dataset=dataset["train"],
shuffle=True,
collate_fn=collater,
batch_size=self.config["batch_size"],
num_workers=self.config["num_workers"],
pin_memory=self.config["pin_memory"],
),
"dev": DataLoader(
dataset=dataset["dev"],
shuffle=False,
collate_fn=collater,
batch_size=self.config["batch_size"],
num_workers=0,
pin_memory=False, # save some memory. set to True if you have enough memory.
),
}
def train():
parser = argparse.ArgumentParser()
parser.add_argument(
"-c", "--config", type=str, required=True,
help="the path of config yaml file."
)
parser.add_argument(
"--tag", type=str, required=True,
help="the outputs will be saved to exp_root/tag/"
)
parser.add_argument(
"--exp_root", type=str, default="exp"
)
parser.add_argument(
"--resume", default="", type=str, nargs="?",
help='checkpoint file path to resume training. (default="")',
)
parser.add_argument("--seed", default=1337, type=int)
parser.add_argument("--disable_cudnn", choices=("True", "False"), default="False", help="Disable CUDNN")
args = parser.parse_args()
train_main = TrainMain(args)
train_main.initialize_data_loader()
train_main.define_model_optimizer_scheduler()
train_main.define_criterion()
train_main.define_trainer()
train_main.initialize_model()
train_main.run()
if __name__ == '__main__':
train()
|