ppo-LunarLander-v2 / config.json
lzlarryli's picture
Upload folder using huggingface_hub
c4a3461 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ed20bc6fa30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ed20bc6fac0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ed20bc6fb50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ed20bc6fbe0>", "_build": "<function ActorCriticPolicy._build at 0x7ed20bc6fc70>", "forward": "<function ActorCriticPolicy.forward at 0x7ed20bc6fd00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ed20bc6fd90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ed20bc6fe20>", "_predict": "<function ActorCriticPolicy._predict at 0x7ed20bc6feb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ed20bc6ff40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ed20bc74040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ed20bc740d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ed20bc032c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736827504628839863, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEOrlL4GUa0/1resvuAqbb7Fq42+SwnIPAAAAAAAAAAAk4MbPj2aLLkA9jg67lHSNlzzsDuigVa5AACAPwAAgD9tH4Y+xDdTP8pnS71rTp6+7s/BPXBo9b0AAAAAAAAAAE0k9r24rpe5VmCsvGWT27wRHwK8MMfkvQAAAAAAAIA/8ySjvRTUlrrGiYG7BkgDNWrmyjqar2K0AACAPwAAAAANW+a9KUhxui5ev7pJF4u1nQyOut2D3zkAAIA/AAAAAM0RIT2P5la6EJEJOlEHjLSxQSG6FhQguQAAgD8AAIA/QENrPg6cmT+zQrw+y3bfvm0KlT69gdC8AAAAAAAAAABziYM9sdZKP3YPRL1w16a+ZleqPUWh/rwAAAAAAAAAAHp5Eb7S6aC71knAulnnFrkuGvA8nhX7OQAAgD8AAIA/hugNPo9Sej99GvO63cmHvkMmsz0aSlm6AAAAAAAAAACz/x6+A6cDvHExozowpGc4vlBfPZ7VzLkAAIA/AACAP2YSKr6HuzM+BJQrPkEcdr4Dut882AuiPQAAAAAAAAAAM5SRvI/+GrrWPg45Gsxys29ykLvKmiW4AACAPwAAgD8NQg4+wJ+5Pok2H771hSO+twakuwK6GL0AAAAAAAAAAJq1173hiJi6T/GIOQuwmDQZ0c46Ee2duAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGPlXMpw0fqMAWyUTegDjAF0lEdAkvSJZjhDPXV9lChoBkdAYMBAymALA2gHTegDaAhHQJL92oDPnjh1fZQoaAZHQGBLCtzS1E5oB03oA2gIR0CS/i0bcXWOdX2UKGgGR8Aj14qwyIpIaAdNCQFoCEdAkv6LIT4+KXV9lChoBkdAZNLz2exwAGgHTegDaAhHQJL/VaLXL/11fZQoaAZHQGSEHwPRRdhoB03oA2gIR0CTAFJemelLdX2UKGgGR0BkNROerdWRaAdN6ANoCEdAkwFHzYmLL3V9lChoBkdAZneJAMUh3mgHTegDaAhHQJMGXWJ79ht1fZQoaAZHQGHuMA/9pAVoB03oA2gIR0CTCCoouwotdX2UKGgGR0BjoQwCbMHKaAdN6ANoCEdAkxKJDeCTU3V9lChoBkdAW77LfUF0P2gHTegDaAhHQJMnoX9BKL91fZQoaAZHQGJhWhqTKT1oB03oA2gIR0CTKImBe5WjdX2UKGgGR0Bj1vdKujh2aAdN6ANoCEdAkylPAO8TSXV9lChoBkdAXUggW8AaN2gHTegDaAhHQJMp6exwAEN1fZQoaAZHQGEt4Z/CqIdoB03oA2gIR0CTKwJjDsMRdX2UKGgGR0BhRTfrKNhmaAdN6ANoCEdAkzUdEofCAXV9lChoBkdAYrPupjtojGgHTegDaAhHQJNCR4A0bcZ1fZQoaAZHQGN9Y1pCa7VoB03oA2gIR0CTTM5mAbyZdX2UKGgGR0BjZFjbzshQaAdN6ANoCEdAk00aJEYwZnV9lChoBkdAYc1I+W4Vh2gHTegDaAhHQJNNcekpI+Z1fZQoaAZHQGaLwCSzPbBoB03oA2gIR0CTTin13+uOdX2UKGgGR0BlChXr+o9+aAdN6ANoCEdAk08agZjx1HV9lChoBkdAYN/m/336AWgHTegDaAhHQJNQB8MNMGp1fZQoaAZHQGZ1dhRZU1hoB03oA2gIR0CTVMnZkCmudX2UKGgGR0BhLugte2NOaAdN6ANoCEdAk1aMVQAMlXV9lChoBkdAQt5ZwGW2PWgHTQsBaAhHQJNaDOGCZnd1fZQoaAZHQGPV2ys0YTFoB03oA2gIR0CTXseY2Kl6dX2UKGgGR0BiQCwfQrtmaAdN6ANoCEdAk3OFSn+AE3V9lChoBkdAS2vZbpu/DmgHS/VoCEdAk3PT1kDp1XV9lChoBkdAXpsgzP8htGgHTegDaAhHQJN0rhybQTp1fZQoaAZHQGdbJFspG4JoB03oA2gIR0CTdYzPa+N+dX2UKGgGR0BjL1cQiA2AaAdN6ANoCEdAk3ZMLKFIu3V9lChoBkdAZFTF5v99+mgHTegDaAhHQJN3gaDPGAF1fZQoaAZHQGN11rAP/aRoB03oA2gIR0CTgxThHbypdX2UKGgGR0BfAwuqWC2+aAdN6ANoCEdAk4/5dv863nV9lChoBkdAZaBfYSQHRmgHTegDaAhHQJOaC+L3sX11fZQoaAZHQGLl7qyGBWhoB03oA2gIR0CTms7Rv3rVdX2UKGgGR0Bk6gfSx7iRaAdN6ANoCEdAk5u+vMbFTHV9lChoBkdAX5cfp2U0N2gHTegDaAhHQJOc65OJtSB1fZQoaAZHQF4d6o2n889oB03oA2gIR0CTnhMAFPi2dX2UKGgGR0ButUqMFUyYaAdNcANoCEdAk58gBDG96HV9lChoBkdAYQcCEHt4RmgHTegDaAhHQJOr3fm9xqB1fZQoaAZHQGWE/GlyimFoB03oA2gIR0CTsjXfZVXFdX2UKGgGR0BcVmC7K7qZaAdN6ANoCEdAk7VKOxSpBHV9lChoBkdAYkytsenyeGgHTegDaAhHQJO1iDg62fF1fZQoaAZHQF8O7MgU1yhoB03oA2gIR0CTxyAVO9FndX2UKGgGR0BkgmuvECNkaAdN6ANoCEdAk8fbKRuCPXV9lChoBkdAYffC9AX2umgHTegDaAhHQJPIcBgeA/d1fZQoaAZHQGMrIGQjlgdoB03oA2gIR0CTyWOfukULdX2UKGgGR0BgLmgam4y5aAdN6ANoCEdAk9QiJGe+VXV9lChoBkdAYrTIPK+zt2gHTegDaAhHQJPj0O+ZgG91fZQoaAZHQGRVWaDwpfBoB03oA2gIR0CT7Wn/DLr5dX2UKGgGR0Bg1U/hVENOaAdN6ANoCEdAk+4mzWwu/XV9lChoBkdAYAwVqN6w+2gHTegDaAhHQJPvDwpe/pN1fZQoaAZHQGH76iblRxdoB03oA2gIR0CT8BeMQ2/BdX2UKGgGR0Bjgaf4AS39aAdN6ANoCEdAk/Eb6ciGFnV9lChoBkdAYx74LThHb2gHTegDaAhHQJPyDPTodMl1fZQoaAZHQDlWmsNlRP5oB0umaAhHQJP4QRJ2+wl1fZQoaAZHQGGHcrRSgoRoB03oA2gIR0CT+5nTAnD0dX2UKGgGR0BhtIz+FUQ1aAdN6ANoCEdAlABJ1aGHpXV9lChoBkdAYAMKbayrxWgHTegDaAhHQJQDJORDCxh1fZQoaAZHQF/S+az/p+toB03oA2gIR0CUA2HUMG5ddX2UKGgGR0Bi3O7xusLfaAdN6ANoCEdAlAP3k5p8GHV9lChoBkdAZTxQtz0Yj2gHTegDaAhHQJQEoo+fRNR1fZQoaAZHQGOIzBAOav1oB03oA2gIR0CUGGymygPFdX2UKGgGR0Bj9NQ2uPmxaAdN6ANoCEdAlBlRLkCFK3V9lChoBkdAZAVKZDzAe2gHTegDaAhHQJQjSkdmxt51fZQoaAZHQGBD/OD8LrpoB03oA2gIR0CUMAJk5IYndX2UKGgGR0BwGgBmwqy4aAdNWANoCEdAlDGIw/PgN3V9lChoBkdAYqdDhLoOhGgHTegDaAhHQJQ5dHiFTNt1fZQoaAZHQGR4kNvwVj9oB03oA2gIR0CUOiaEBbOedX2UKGgGR0BhMxeeFtbcaAdN6ANoCEdAlD1wiFCb+nV9lChoBkdAZci7QLNOd2gHTegDaAhHQJQ+3KDCgsd1fZQoaAZHQGCUzbFjurpoB03oA2gIR0CUSQkvboKVdX2UKGgGR0Blz9Da4+bFaAdN6ANoCEdAlEznWe6I33V9lChoBkdAYsWU0Nz8xmgHTegDaAhHQJRSU7xNIsl1fZQoaAZHQGQTtthuwX9oB03oA2gIR0CUVXg0TDfndX2UKGgGR0BhM3PC2tuDaAdN6ANoCEdAlFW2diDujXV9lChoBkdAY9Q8eS0SiGgHTegDaAhHQJRWXB0p3HJ1fZQoaAZHQGGxhoM8YANoB03oA2gIR0CUVxjAzpHJdX2UKGgGR0BYUCXUpd8iaAdN6ANoCEdAlFevmT1TSHV9lChoBkdAZGqAjIJZ4mgHTegDaAhHQJRYm7kGRmt1fZQoaAZHQGHGnB1s+FFoB03oA2gIR0CUdaO/+Kj0dX2UKGgGR0A4Yqh11W8zaAdL+mgIR0CUehoegctHdX2UKGgGR0BfHC8WbgCPaAdN6ANoCEdAlIPmDDjzZ3V9lChoBkdAYOV+UhV2imgHTegDaAhHQJSFaRigCfZ1fZQoaAZHQEAmnIhhYvFoB0v3aAhHQJSKsFs54np1fZQoaAZHQGZvh/I8yN5oB03oA2gIR0CUjWQrMC9zdX2UKGgGR0Bmr4YNy5qeaAdN6ANoCEdAlI4L4N7SiXV9lChoBkdAY+/gWrOqvWgHTegDaAhHQJSRKWKMvRJ1fZQoaAZHQGP0KsEJSixoB03oA2gIR0CUkjpjc2zfdX2UKGgGR0BB4FOGj9GaaAdNGwFoCEdAlJbjrZ8KHHV9lChoBkdAY+xg9/z8QGgHTegDaAhHQJSZk052hZh1fZQoaAZHQGQRjr7fpEBoB03oA2gIR0CUnTYw7DEWdX2UKGgGR0Bh04LApKBeaAdN6ANoCEdAlKJxAfMfR3V9lChoBkdAZTZSeiBXjmgHTegDaAhHQJSmEqBmPHV1fZQoaAZHQGUfMiB5HExoB03oA2gIR0CUpmBq9GqhdX2UKGgGR0BnvJFG5MDfaAdN6ANoCEdAlKcuenQ6ZHV9lChoBkdAYdWF8ohIOGgHTegDaAhHQJSoC1PWQOp1fZQoaAZHQGI+qmsNlRRoB03oA2gIR0CUqL8ejmCAdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}