|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import warnings |
|
import shutil |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig |
|
import torch |
|
from llavavid.model import * |
|
from llavavid.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
|
|
|
|
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", overwrite_config=None): |
|
kwargs = {"device_map": device_map} |
|
|
|
|
|
if load_8bit: |
|
kwargs["load_in_8bit"] = True |
|
elif load_4bit: |
|
kwargs["load_in_4bit"] = True |
|
kwargs["quantization_config"] = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4") |
|
else: |
|
kwargs["torch_dtype"] = torch.float16 |
|
|
|
if "llava" in model_name.lower(): |
|
|
|
if "lora" in model_name.lower() and model_base is None: |
|
warnings.warn( |
|
"There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged." |
|
) |
|
if "lora" in model_name.lower() and model_base is not None: |
|
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
print("Loading LLaVA from base model...") |
|
if "mixtral" in model_name.lower(): |
|
model = LlavaMixtralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs) |
|
else: |
|
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs) |
|
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features |
|
if model.lm_head.weight.shape[0] != token_num: |
|
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) |
|
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) |
|
|
|
print("Loading additional LLaVA weights...") |
|
if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")): |
|
non_lora_trainables = torch.load(os.path.join(model_path, "non_lora_trainables.bin"), map_location="cpu") |
|
else: |
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
def load_from_hf(repo_id, filename, subfolder=None): |
|
cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder) |
|
return torch.load(cache_file, map_location="cpu") |
|
|
|
non_lora_trainables = load_from_hf(model_path, "non_lora_trainables.bin") |
|
non_lora_trainables = {(k[11:] if k.startswith("base_model.") else k): v for k, v in non_lora_trainables.items()} |
|
if any(k.startswith("model.model.") for k in non_lora_trainables): |
|
non_lora_trainables = {(k[6:] if k.startswith("model.") else k): v for k, v in non_lora_trainables.items()} |
|
model.load_state_dict(non_lora_trainables, strict=False) |
|
|
|
from peft import PeftModel |
|
|
|
print("Loading LoRA weights...") |
|
model = PeftModel.from_pretrained(model, model_path) |
|
print("Merging LoRA weights...") |
|
model = model.merge_and_unload() |
|
print("Model is loaded...") |
|
elif model_base is not None: |
|
|
|
print("Loading LLaVA from base model...") |
|
if "mpt" in model_name.lower().replace("prompt", ""): |
|
if not os.path.isfile(os.path.join(model_path, "configuration_mpt.py")): |
|
shutil.copyfile(os.path.join(model_base, "configuration_mpt.py"), os.path.join(model_path, "configuration_mpt.py")) |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True) |
|
cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True) |
|
model = LlavaMptForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
cfg_pretrained = AutoConfig.from_pretrained(model_path) |
|
if overwrite_config is not None: |
|
print(f"Overwriting config with {overwrite_config}") |
|
for k, v in overwrite_config.items(): |
|
setattr(cfg_pretrained, k, v) |
|
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) |
|
|
|
mm_projector_weights = torch.load(os.path.join(model_path, "mm_projector.bin"), map_location="cpu") |
|
mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} |
|
model.load_state_dict(mm_projector_weights, strict=False) |
|
else: |
|
if "mpt" in model_name.lower().replace("prompt", ""): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) |
|
model = LlavaMptForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) |
|
elif "mixtral" in model_name.lower() and "vicuna" not in model_name.lower() and "mistral" not in model_name.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = LlavaMixtralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) |
|
elif "mistral" in model_name.lower() or "zephyr" in model_name.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
cfg_pretrained = AutoConfig.from_pretrained(model_path) |
|
|
|
if overwrite_config is not None: |
|
print(f"Overwriting config with {overwrite_config}") |
|
for k, v in overwrite_config.items(): |
|
setattr(cfg_pretrained, k, v) |
|
model = LlavaMistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) |
|
cfg_pretrained = AutoConfig.from_pretrained(model_path) |
|
if overwrite_config is not None: |
|
print(f"Overwriting config with {overwrite_config}") |
|
for k, v in overwrite_config.items(): |
|
setattr(cfg_pretrained, k, v) |
|
model = LlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) |
|
else: |
|
|
|
if model_base is not None: |
|
|
|
from peft import PeftModel |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto") |
|
print(f"Loading LoRA weights from {model_path}") |
|
model = PeftModel.from_pretrained(model, model_path) |
|
print(f"Merging weights") |
|
model = model.merge_and_unload() |
|
print("Convert to FP16...") |
|
model.to(torch.float16) |
|
else: |
|
use_fast = False |
|
if "mpt" in model_name.lower().replace("prompt", ""): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) |
|
|
|
image_processor = None |
|
|
|
assert "llava" in model_name.lower(), "Only LLaVA models are supported for video chatbot." |
|
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) |
|
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) |
|
if mm_use_im_patch_token: |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
if mm_use_im_start_end: |
|
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
vision_tower = model.get_vision_tower() |
|
if not vision_tower.is_loaded: |
|
vision_tower.load_model(device_map=device_map) |
|
if device_map != "auto": |
|
vision_tower.to(device="cuda", dtype=torch.float16) |
|
image_processor = vision_tower.image_processor |
|
|
|
if hasattr(model.config, "max_sequence_length"): |
|
context_len = model.config.max_sequence_length |
|
else: |
|
context_len = 2048 |
|
|
|
return tokenizer, model, image_processor, context_len |
|
|