|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import warnings |
|
import shutil |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig |
|
import torch |
|
from llava.model import * |
|
from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
from llava.utils import rank0_print |
|
|
|
|
|
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", attn_implementation="flash_attention_2", customized_config=None, **kwargs): |
|
kwargs = {"device_map": device_map} |
|
|
|
if load_8bit: |
|
kwargs["load_in_8bit"] = True |
|
elif load_4bit: |
|
kwargs["load_in_4bit"] = True |
|
kwargs["quantization_config"] = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4") |
|
else: |
|
kwargs["torch_dtype"] = torch.float16 |
|
|
|
if customized_config is not None: |
|
kwargs["config"] = customized_config |
|
|
|
if "llava" in model_name.lower(): |
|
|
|
if "lora" in model_name.lower() and model_base is None: |
|
warnings.warn( |
|
"There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged." |
|
) |
|
if "lora" in model_name.lower() and model_base is not None: |
|
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
rank0_print("Loading LLaVA from base model...") |
|
if "mixtral" in model_name.lower(): |
|
from llava.model.language_model.llava_mixtral import LlavaMixtralConfig |
|
|
|
lora_cfg_pretrained = LlavaMixtralConfig.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
model = LlavaMixtralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, attn_implementation=attn_implementation, **kwargs) |
|
elif "mistral" in model_name.lower(): |
|
from llava.model.language_model.llava_mistral import LlavaMistralConfig |
|
|
|
lora_cfg_pretrained = LlavaMistralConfig.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
model = LlavaMistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, attn_implementation=attn_implementation, **kwargs) |
|
elif "gemma" in model_name.lower(): |
|
from llava.model.language_model.llava_gemma import LlavaGemmaConfig |
|
|
|
lora_cfg_pretrained = LlavaGemmaConfig.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
model = LlavaGemmaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, attn_implementation=attn_implementation, **kwargs) |
|
else: |
|
from llava.model.language_model.llava_llama import LlavaConfig |
|
|
|
lora_cfg_pretrained = LlavaConfig.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, attn_implementation=attn_implementation, **kwargs) |
|
|
|
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features |
|
if model.lm_head.weight.shape[0] != token_num: |
|
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) |
|
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) |
|
|
|
rank0_print("Loading additional LLaVA weights...") |
|
if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")): |
|
non_lora_trainables = torch.load(os.path.join(model_path, "non_lora_trainables.bin"), map_location="cpu") |
|
else: |
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
def load_from_hf(repo_id, filename, subfolder=None): |
|
cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder) |
|
return torch.load(cache_file, map_location="cpu") |
|
|
|
non_lora_trainables = load_from_hf(model_path, "non_lora_trainables.bin") |
|
non_lora_trainables = {(k[11:] if k.startswith("base_model.") else k): v for k, v in non_lora_trainables.items()} |
|
if any(k.startswith("model.model.") for k in non_lora_trainables): |
|
non_lora_trainables = {(k[6:] if k.startswith("model.") else k): v for k, v in non_lora_trainables.items()} |
|
model.load_state_dict(non_lora_trainables, strict=False) |
|
|
|
from peft import PeftModel |
|
|
|
rank0_print("Loading LoRA weights...") |
|
model = PeftModel.from_pretrained(model, model_path) |
|
rank0_print("Merging LoRA weights...") |
|
model = model.merge_and_unload() |
|
rank0_print("Model is loaded...") |
|
elif model_base is not None: |
|
|
|
rank0_print(f"Loading LLaVA from base model {model_base}...") |
|
if "mixtral" in model_name.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
cfg_pretrained = AutoConfig.from_pretrained(model_path) |
|
model = LlavaMixtralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, attn_implementation=attn_implementation, **kwargs) |
|
elif "mistral" in model_name.lower() or "zephyr" in model_name.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
cfg_pretrained = AutoConfig.from_pretrained(model_path) |
|
model = LlavaMistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, attn_implementation=attn_implementation, **kwargs) |
|
elif "gemma" in model_name.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
cfg_pretrained = AutoConfig.from_pretrained(model_path) |
|
model = LlavaGemmaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, attn_implementation=attn_implementation, **kwargs) |
|
elif ( |
|
"wizardlm-2" in model_name.lower() |
|
and "vicuna" in model_name.lower() |
|
or "llama" in model_name.lower() |
|
or "yi" in model_name.lower() |
|
or "nous-hermes" in model_name.lower() |
|
or "llava-v1.6-34b" in model_name.lower() |
|
or "llava-v1.5" in model_name.lower() |
|
): |
|
from llava.model.language_model.llava_llama import LlavaConfig |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) |
|
if customized_config is None: |
|
llava_cfg = LlavaConfig.from_pretrained(model_path) |
|
if "v1.5" in model_name.lower(): |
|
llava_cfg.delay_load = True |
|
else: |
|
llava_cfg = customized_config |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
llava_cfg = LlavaConfig.from_pretrained(model_path) |
|
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=llava_cfg, **kwargs) |
|
else: |
|
raise ValueError(f"Model {model_name} not supported") |
|
|
|
mm_projector_weights = torch.load(os.path.join(model_path, "mm_projector.bin"), map_location="cpu") |
|
mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} |
|
model.load_state_dict(mm_projector_weights, strict=False) |
|
else: |
|
rank0_print(f"Loaded LLaVA model: {model_path}") |
|
if "mixtral" in model_name.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = LlavaMixtralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, **kwargs) |
|
elif "mistral" in model_name.lower() or "zephyr" in model_name.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = LlavaMistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, **kwargs) |
|
elif ( |
|
"wizardlm-2" in model_name.lower() |
|
and "vicuna" in model_name.lower() |
|
or "llama" in model_name.lower() |
|
or "yi" in model_name.lower() |
|
or "nous-hermes" in model_name.lower() |
|
or "llava-v1.6-34b" in model_name.lower() |
|
or "llava-v1.5" in model_name.lower() |
|
): |
|
from llava.model.language_model.llava_llama import LlavaConfig |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) |
|
if customized_config is None: |
|
llava_cfg = LlavaConfig.from_pretrained(model_path) |
|
if "v1.5" in model_name.lower(): |
|
llava_cfg.delay_load = True |
|
else: |
|
llava_cfg = customized_config |
|
|
|
model = LlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, config=llava_cfg, **kwargs) |
|
elif "qwen" in model_name.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) |
|
model = LlavaQwenForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, **kwargs) |
|
elif "gemma" in model_name.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) |
|
cfg_pretrained = AutoConfig.from_pretrained(model_path) |
|
model = LlavaGemmaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=cfg_pretrained, attn_implementation=attn_implementation, **kwargs) |
|
else: |
|
rank0_print("\n\n\nWarning : No matching llava architecture, auto load llava_llama. If it is not intended, specify it in model_name\n\n\n") |
|
try: |
|
from llava.model.language_model.llava_llama import LlavaConfig |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) |
|
if customized_config is None: |
|
llava_cfg = LlavaConfig.from_pretrained(model_path) |
|
if "v1.5" in model_path.lower(): |
|
llava_cfg.delay_load = True |
|
else: |
|
llava_cfg = customized_config |
|
model = LlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, attn_implementation=attn_implementation, config=llava_cfg, **kwargs) |
|
except: |
|
raise ValueError(f"Model {model_name} not supported") |
|
|
|
else: |
|
|
|
if model_base is not None: |
|
|
|
from peft import PeftModel |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto") |
|
print(f"Loading LoRA weights from {model_path}") |
|
model = PeftModel.from_pretrained(model, model_path) |
|
print(f"Merging weights") |
|
model = model.merge_and_unload() |
|
print("Convert to FP16...") |
|
model.to(torch.float16) |
|
else: |
|
use_fast = False |
|
if "mpt" in model_name.lower().replace("prompt", ""): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) |
|
|
|
rank0_print(f"Model Class: {model.__class__.__name__}") |
|
image_processor = None |
|
|
|
if "llava" in model_name.lower(): |
|
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) |
|
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) |
|
if mm_use_im_patch_token: |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
if mm_use_im_start_end: |
|
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
vision_tower = model.get_vision_tower() |
|
if not vision_tower.is_loaded: |
|
vision_tower.load_model(device_map=device_map) |
|
if device_map != "auto": |
|
vision_tower.to(device="cuda", dtype=torch.float16) |
|
image_processor = vision_tower.image_processor |
|
|
|
if hasattr(model.config, "max_sequence_length"): |
|
context_len = model.config.max_sequence_length |
|
elif hasattr(model.config, "max_position_embeddings"): |
|
context_len = model.config.max_position_embeddings |
|
elif hasattr(model.config, "tokenizer_model_max_length"): |
|
context_len = model.config.tokenizer_model_max_length |
|
else: |
|
context_len = 2048 |
|
|
|
return tokenizer, model, image_processor, context_len |
|
|