mariusjabami commited on
Commit
85097db
·
verified ·
1 Parent(s): 52f6088

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,135 +1,202 @@
1
  ---
2
  base_model: nicholasKluge/TeenyTinyLlama-460m
3
- library_name: transformers
4
- license: cc-by-nc-nd-4.0
5
- language:
6
- - pt
7
- pipeline_tag: text-generation
8
- datasets:
9
- - cnmoro/LogicReasoningEnglishPortuguese
10
- - LumiOpen/opengpt-x_gsm8kx
11
- metrics:
12
- - accuracy
13
  ---
14
- # 🧠 WNL468M — Modelo de Raciocínio Lógico em Português para Ensino e Educação
15
 
16
- **WNL268M** é um modelo de linguagem com aproximadamente **268 milhões de parâmetros**, desenvolvido especialmente para tarefas de **raciocínio lógico** e compreensão em **português**, com foco em **ensino, educação e suporte acadêmico**. Este projeto foi inspirado e criado para um **projeto acadêmico** de destaque em uma **feira de ciências**, com o objetivo de contribuir para o avanço do ensino de inteligência artificial aplicada ao idioma português.
17
 
18
- ## Origem do Nome
19
 
20
- **WNL** é uma homenagem a três colegas que foram a inspiração inicial para o projeto:
21
 
22
- - **W** — Weia
23
- - **N** — Nauria
24
- - **L** — Leonilda
25
 
26
- Embora elas não participem diretamente, seus nomes simbolizam a motivação que deu origem ao desenvolvimento do modelo.
27
 
28
- ## 👥 Equipe Fundadora
29
 
30
- - Marius Jabami Desenvolvedor principal, integração com modelo, lógica central e liderança técnica
31
 
32
- - Ilson Lopes – Apoio geral ao desenvolvimento e testes técnicos
33
 
34
- - Délcio Pro – Interface visual (Kivy), processamento de texto, usabilidade
35
 
36
- - José Bukete Lógica do chat em Kivy, controle de eventos e exibição de mensagens
 
 
 
 
 
 
37
 
38
- - Fernando Queta – Integração com modelo Transformers, geração de respostas
39
 
40
- - Inácio Oicani Histórico de conversa, normalização de texto, refinamento de UI/UX
41
 
42
- - Daniel Raimundo Estilo visual, fontes, cores, animações e experiência do usuário
 
 
43
 
44
- - Celsio Simplício – Testes, simulações, depuração e melhoria de desempenho
45
 
46
- - Arsênio Afonso Suporte em testes e revisão técnica
47
 
48
- - Cristiano Jomba – Testes diversos, análise de comportamento do chatbot
49
 
 
50
 
51
- ## 🧩 Dataset Utilizado
52
 
53
- O modelo foi finamente ajustado utilizando o dataset:
54
 
55
- 📚 [`cnmoro/LogicReasoningEnglishPortuguese`](https://huggingface.co/datasets/cnmoro/LogicReasoningEnglishPortuguese)
56
 
57
- Este conjunto bilíngue contém pares de perguntas e respostas que exigem **raciocínio lógico**, proporcionando uma base robusta para treinar o modelo em tarefas de compreensão, dedução e resposta estruturada, essenciais para aplicações educacionais.
58
 
59
- ## 🔍 Informações Técnicas Detalhadas
60
 
61
- - **Parâmetros:** ~468 milhões
62
- - **Arquitetura Base:** Adaptada do LLaMA, conhecida pela eficiência em tarefas de linguagem natural
63
- - **Tokenizador:** SentencePiece (formato LLaMA)
64
- - **Método de Treinamento:** Fine-tuning com LoRA, seguido de mesclagem dos pesos para otimização
65
- - **Framework:** PyTorch com Hugging Face Transformers
66
- - **Tipo de Modelo:** Causal Language Model (modelo generativo para texto)
67
- - **Idiomas:** Português (principal), com suporte a dados em inglês do dataset bilíngue
68
- - **Uso:** Aplicações educacionais, chatbots acadêmicos, ferramentas de ensino e suporte ao raciocínio lógico
69
 
70
- ## 🎯 Propósito e Aplicações
71
 
72
- O **WNL268M** foi desenvolvido com foco pedagógico, visando:
73
 
74
- - Facilitar o aprendizado e o ensino de lógica e raciocínio no idioma português
75
- - Servir como base para projetos acadêmicos e feiras de ciências, mostrando a viabilidade de modelos customizados para educação
76
- - Criar ferramentas interativas que ajudem estudantes e educadores a explorarem conceitos complexos de forma acessível e inteligente
77
- - Demonstrar que projetos de IA podem ser desenvolvidos colaborativamente em ambientes educacionais
78
 
79
- ## 💻 Como Usar o Modelo
80
 
81
- ```python
82
- from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
83
- import torch
84
 
85
- repo_id = "lambdaindie/WNL468M"
86
 
87
- tokenizer = AutoTokenizer.from_pretrained(repo_id)
88
- model = AutoModelForCausalLM.from_pretrained(repo_id, device_map="auto", torch_dtype=torch.float16)
89
- model.eval()
90
 
91
- streamer = TextStreamer(tokenizer)
92
 
93
- while True:
94
- prompt = input("Você: ")
95
- inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
96
- _ = model.generate(**inputs, max_new_tokens=100, streamer=streamer)
97
 
98
- ```
99
 
100
- 🚀 Próximos Passos
101
 
102
- Ampliação do dataset com mais exemplos em português
103
 
104
- Desenvolvimento de versões maiores com foco em domínio acadêmico específico
105
 
106
- Integração com plataformas educacionais para testes reais em sala de aula
107
 
 
108
 
 
109
 
110
- ---
111
 
112
- Criado com dedicação, conhecimento e fé no futuro da educação.
113
- Equipe fundadora empenhada em transformar aprendizado através da inteligência artificial.
114
 
115
- ---
116
 
117
- ## 🔒 Licença
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
 
119
- Este modelo está licenciado sob:
120
 
121
- **[CC BY-NC-ND 4.0 (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0)](https://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt)**
122
 
123
- Você é livre para:
124
 
125
- - Compartilhar copiar e redistribuir o material em qualquer meio ou formato
126
 
127
- Desde que siga os termos:
128
 
129
- - **Atribuição** Deve creditar os autores (ver seção "Equipe Fundadora").
130
- - **Não Comercial** — Não pode usar o material para fins comerciais.
131
- - **Sem Derivações** — Não pode remixar, transformar ou criar a partir do material.
132
 
133
- Este modelo é exclusivo para fins **acadêmicos e educacionais**.
 
134
 
135
- ---
 
1
  ---
2
  base_model: nicholasKluge/TeenyTinyLlama-460m
3
+ library_name: peft
 
 
 
 
 
 
 
 
 
4
  ---
 
5
 
6
+ # Model Card for Model ID
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
11
 
12
+ ## Model Details
13
 
14
+ ### Model Description
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
17
 
 
18
 
 
19
 
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
+ ### Model Sources [optional]
29
 
30
+ <!-- Provide the basic links for the model. -->
31
 
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
 
36
+ ## Uses
37
 
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
+ ### Direct Use
41
 
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
+ [More Information Needed]
45
 
46
+ ### Downstream Use [optional]
47
 
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
+ [More Information Needed]
51
 
52
+ ### Out-of-Scope Use
53
 
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
 
 
 
 
55
 
56
+ [More Information Needed]
57
 
58
+ ## Bias, Risks, and Limitations
59
 
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
61
 
62
+ [More Information Needed]
63
 
64
+ ### Recommendations
 
 
65
 
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
69
 
70
+ ## How to Get Started with the Model
71
 
72
+ Use the code below to get started with the model.
 
 
 
73
 
74
+ [More Information Needed]
75
 
76
+ ## Training Details
77
 
78
+ ### Training Data
79
 
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
+ [More Information Needed]
83
 
84
+ ### Training Procedure
85
 
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
+ #### Preprocessing [optional]
89
 
90
+ [More Information Needed]
 
91
 
 
92
 
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
+ [More Information Needed]
188
 
189
+ ## More Information [optional]
190
 
191
+ [More Information Needed]
192
 
193
+ ## Model Card Authors [optional]
194
 
195
+ [More Information Needed]
196
 
197
+ ## Model Card Contact
 
 
198
 
199
+ [More Information Needed]
200
+ ### Framework versions
201
 
202
+ - PEFT 0.15.2
adapter_config.json CHANGED
@@ -24,8 +24,8 @@
24
  "rank_pattern": {},
25
  "revision": null,
26
  "target_modules": [
27
- "q_proj",
28
- "v_proj"
29
  ],
30
  "task_type": "CAUSAL_LM",
31
  "trainable_token_indices": null,
 
24
  "rank_pattern": {},
25
  "revision": null,
26
  "target_modules": [
27
+ "v_proj",
28
+ "q_proj"
29
  ],
30
  "task_type": "CAUSAL_LM",
31
  "trainable_token_indices": null,
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e25edca5a6d7ddef8b3e30502982709a0b20a24cbd2d50169477550e925c01ca
3
  size 3158328
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0568795f5ce5198768994f32e4445d3352141cf2c84e5347ad9471e73bee7be
3
  size 3158328
checkpoint-11/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: nicholasKluge/TeenyTinyLlama-460m
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-11/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "nicholasKluge/TeenyTinyLlama-460m",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 8,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "v_proj",
28
+ "q_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "trainable_token_indices": null,
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-11/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0568795f5ce5198768994f32e4445d3352141cf2c84e5347ad9471e73bee7be
3
+ size 3158328
checkpoint-11/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a2f1cf3b58bf69e0d674a9f68b0f6d14a331b8dc53d8b96e8916b5a4f662e37
3
+ size 6372346
checkpoint-11/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:936e1ac437536fc6f2a7523589c813bc4d123da5ed918bb367718a11bad5f91c
3
+ size 14244
checkpoint-11/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ade215a47a020920d715bac0324c23ef8689acd1f3b55b0400999cc5a8b8c5b9
3
+ size 1064
checkpoint-11/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-11/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-11/tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "3": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ }
38
+ },
39
+ "bos_token": "<s>",
40
+ "bos_token_id": 1,
41
+ "clean_up_tokenization_spaces": false,
42
+ "eos_token": "</s>",
43
+ "eos_token_id": 2,
44
+ "extra_special_tokens": {},
45
+ "legacy": false,
46
+ "model_max_length": 1000000000000000019884624838656,
47
+ "pad_token": "</s>",
48
+ "pad_token_id": 2,
49
+ "padding_side": "right",
50
+ "sp_model_kwargs": {},
51
+ "tokenizer_class": "LlamaTokenizerFast",
52
+ "unk_token": "<unk>",
53
+ "unk_token_id": 0,
54
+ "use_default_system_prompt": false
55
+ }
checkpoint-11/trainer_state.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 500,
7
+ "global_step": 11,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.9090909090909091,
14
+ "grad_norm": 0.0843924954533577,
15
+ "learning_rate": 9.090909090909091e-06,
16
+ "loss": 2.6615,
17
+ "step": 10
18
+ }
19
+ ],
20
+ "logging_steps": 10,
21
+ "max_steps": 11,
22
+ "num_input_tokens_seen": 0,
23
+ "num_train_epochs": 1,
24
+ "save_steps": 30,
25
+ "stateful_callbacks": {
26
+ "TrainerControl": {
27
+ "args": {
28
+ "should_epoch_stop": false,
29
+ "should_evaluate": false,
30
+ "should_log": false,
31
+ "should_save": true,
32
+ "should_training_stop": true
33
+ },
34
+ "attributes": {}
35
+ }
36
+ },
37
+ "total_flos": 139379129450496.0,
38
+ "train_batch_size": 10,
39
+ "trial_name": null,
40
+ "trial_params": null
41
+ }
checkpoint-11/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24fb5154f80d1216ede6ffde394af20cc4d50dcf55981571384984bbf0cc8293
3
+ size 5240
tokenizer.json CHANGED
@@ -1,7 +1,21 @@
1
  {
2
  "version": "1.0",
3
- "truncation": null,
4
- "padding": null,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  "added_tokens": [
6
  {
7
  "id": 0,
 
1
  {
2
  "version": "1.0",
3
+ "truncation": {
4
+ "direction": "Right",
5
+ "max_length": 512,
6
+ "strategy": "LongestFirst",
7
+ "stride": 0
8
+ },
9
+ "padding": {
10
+ "strategy": {
11
+ "Fixed": 512
12
+ },
13
+ "direction": "Right",
14
+ "pad_to_multiple_of": null,
15
+ "pad_id": 2,
16
+ "pad_type_id": 0,
17
+ "pad_token": "</s>"
18
+ },
19
  "added_tokens": [
20
  {
21
  "id": 0,