private-luodi commited on
Commit
6e0f5dc
·
1 Parent(s): d32c48d

add pause three item

Browse files
added_tokens.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 151673,
3
+ "</img>": 151666,
4
+ "</quad>": 151669,
5
+ "</ref>": 151671,
6
+ "</tool_call>": 151658,
7
+ "<IMG_CONTEXT>": 151667,
8
+ "<box>": 151672,
9
+ "<img>": 151665,
10
+ "<pause_0>": 151674,
11
+ "<pause_1>": 151675,
12
+ "<pause_2>": 151676,
13
+ "<pause_3>": 151677,
14
+ "<pause_4>": 151678,
15
+ "<pause_5>": 151679,
16
+ "<pause_6>": 151680,
17
+ "<pause_7>": 151681,
18
+ "<pause_8>": 151682,
19
+ "<pause_9>": 151683,
20
+ "<quad>": 151668,
21
+ "<ref>": 151670,
22
+ "<tool_call>": 151657,
23
+ "<|box_end|>": 151649,
24
+ "<|box_start|>": 151648,
25
+ "<|endoftext|>": 151643,
26
+ "<|file_sep|>": 151664,
27
+ "<|fim_middle|>": 151660,
28
+ "<|fim_pad|>": 151662,
29
+ "<|fim_prefix|>": 151659,
30
+ "<|fim_suffix|>": 151661,
31
+ "<|im_end|>": 151645,
32
+ "<|im_start|>": 151644,
33
+ "<|image_pad|>": 151655,
34
+ "<|object_ref_end|>": 151647,
35
+ "<|object_ref_start|>": 151646,
36
+ "<|quad_end|>": 151651,
37
+ "<|quad_start|>": 151650,
38
+ "<|repo_name|>": 151663,
39
+ "<|video_pad|>": 151656,
40
+ "<|vision_end|>": 151653,
41
+ "<|vision_pad|>": 151654,
42
+ "<|vision_start|>": 151652
43
+ }
config.json ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "/mnt/afs/xueyingyi/generate_text_pause/checkpoint-3600",
4
+ "architectures": [
5
+ "InternVLChatModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
9
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
10
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
11
+ },
12
+ "downsample_ratio": 0.5,
13
+ "dynamic_image_size": true,
14
+ "force_image_size": 448,
15
+ "hidden_size": 2048,
16
+ "llm_config": {
17
+ "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
18
+ "add_cross_attention": false,
19
+ "architectures": [
20
+ "Qwen2ForCausalLM"
21
+ ],
22
+ "attention_dropout": 0.0,
23
+ "attn_implementation": "flash_attention_2",
24
+ "bad_words_ids": null,
25
+ "begin_suppress_tokens": null,
26
+ "bos_token_id": 151643,
27
+ "chunk_size_feed_forward": 0,
28
+ "cross_attention_hidden_size": null,
29
+ "decoder_start_token_id": null,
30
+ "diversity_penalty": 0.0,
31
+ "do_sample": false,
32
+ "early_stopping": false,
33
+ "encoder_no_repeat_ngram_size": 0,
34
+ "eos_token_id": 151645,
35
+ "exponential_decay_length_penalty": null,
36
+ "finetuning_task": null,
37
+ "forced_bos_token_id": null,
38
+ "forced_eos_token_id": null,
39
+ "hidden_act": "silu",
40
+ "hidden_size": 2048,
41
+ "id2label": {
42
+ "0": "LABEL_0",
43
+ "1": "LABEL_1"
44
+ },
45
+ "initializer_range": 0.02,
46
+ "intermediate_size": 11008,
47
+ "is_decoder": false,
48
+ "is_encoder_decoder": false,
49
+ "label2id": {
50
+ "LABEL_0": 0,
51
+ "LABEL_1": 1
52
+ },
53
+ "length_penalty": 1.0,
54
+ "max_length": 20,
55
+ "max_position_embeddings": 32768,
56
+ "max_window_layers": 70,
57
+ "min_length": 0,
58
+ "model_type": "qwen2",
59
+ "no_repeat_ngram_size": 0,
60
+ "num_attention_heads": 16,
61
+ "num_beam_groups": 1,
62
+ "num_beams": 1,
63
+ "num_hidden_layers": 36,
64
+ "num_key_value_heads": 2,
65
+ "num_return_sequences": 1,
66
+ "output_attentions": false,
67
+ "output_hidden_states": false,
68
+ "output_scores": false,
69
+ "pad_token_id": null,
70
+ "prefix": null,
71
+ "problem_type": null,
72
+ "pruned_heads": {},
73
+ "remove_invalid_values": false,
74
+ "repetition_penalty": 1.0,
75
+ "return_dict": true,
76
+ "return_dict_in_generate": false,
77
+ "rms_norm_eps": 1e-06,
78
+ "rope_theta": 1000000.0,
79
+ "sep_token_id": null,
80
+ "sliding_window": null,
81
+ "suppress_tokens": null,
82
+ "task_specific_params": null,
83
+ "temperature": 1.0,
84
+ "tf_legacy_loss": false,
85
+ "tie_encoder_decoder": false,
86
+ "tie_word_embeddings": false,
87
+ "tokenizer_class": null,
88
+ "top_k": 50,
89
+ "top_p": 1.0,
90
+ "torch_dtype": "bfloat16",
91
+ "torchscript": false,
92
+ "transformers_version": "4.37.2",
93
+ "typical_p": 1.0,
94
+ "use_bfloat16": true,
95
+ "use_cache": false,
96
+ "use_sliding_window": false,
97
+ "vocab_size": 151684
98
+ },
99
+ "max_dynamic_patch": 6,
100
+ "min_dynamic_patch": 1,
101
+ "model_type": "internvl_chat",
102
+ "pad2square": false,
103
+ "ps_version": "v2",
104
+ "select_layer": -1,
105
+ "template": "internvl2_5",
106
+ "tie_word_embeddings": false,
107
+ "torch_dtype": "bfloat16",
108
+ "transformers_version": null,
109
+ "use_backbone_lora": 0,
110
+ "use_llm_lora": 0,
111
+ "use_thumbnail": true,
112
+ "vision_config": {
113
+ "_name_or_path": "",
114
+ "add_cross_attention": false,
115
+ "architectures": [
116
+ "InternVisionModel"
117
+ ],
118
+ "attention_dropout": 0.0,
119
+ "bad_words_ids": null,
120
+ "begin_suppress_tokens": null,
121
+ "bos_token_id": null,
122
+ "chunk_size_feed_forward": 0,
123
+ "cross_attention_hidden_size": null,
124
+ "decoder_start_token_id": null,
125
+ "diversity_penalty": 0.0,
126
+ "do_sample": false,
127
+ "drop_path_rate": 0.0,
128
+ "dropout": 0.0,
129
+ "early_stopping": false,
130
+ "encoder_no_repeat_ngram_size": 0,
131
+ "eos_token_id": null,
132
+ "exponential_decay_length_penalty": null,
133
+ "finetuning_task": null,
134
+ "forced_bos_token_id": null,
135
+ "forced_eos_token_id": null,
136
+ "hidden_act": "gelu",
137
+ "hidden_size": 1024,
138
+ "id2label": {
139
+ "0": "LABEL_0",
140
+ "1": "LABEL_1"
141
+ },
142
+ "image_size": 448,
143
+ "initializer_factor": 1.0,
144
+ "initializer_range": 0.02,
145
+ "intermediate_size": 4096,
146
+ "is_decoder": false,
147
+ "is_encoder_decoder": false,
148
+ "label2id": {
149
+ "LABEL_0": 0,
150
+ "LABEL_1": 1
151
+ },
152
+ "layer_norm_eps": 1e-06,
153
+ "length_penalty": 1.0,
154
+ "max_length": 20,
155
+ "min_length": 0,
156
+ "model_type": "intern_vit_6b",
157
+ "no_repeat_ngram_size": 0,
158
+ "norm_type": "layer_norm",
159
+ "num_attention_heads": 16,
160
+ "num_beam_groups": 1,
161
+ "num_beams": 1,
162
+ "num_channels": 3,
163
+ "num_hidden_layers": 24,
164
+ "num_return_sequences": 1,
165
+ "output_attentions": false,
166
+ "output_hidden_states": false,
167
+ "output_scores": false,
168
+ "pad_token_id": null,
169
+ "patch_size": 14,
170
+ "prefix": null,
171
+ "problem_type": null,
172
+ "pruned_heads": {},
173
+ "qk_normalization": false,
174
+ "qkv_bias": true,
175
+ "remove_invalid_values": false,
176
+ "repetition_penalty": 1.0,
177
+ "return_dict": true,
178
+ "return_dict_in_generate": false,
179
+ "sep_token_id": null,
180
+ "suppress_tokens": null,
181
+ "task_specific_params": null,
182
+ "temperature": 1.0,
183
+ "tf_legacy_loss": false,
184
+ "tie_encoder_decoder": false,
185
+ "tie_word_embeddings": true,
186
+ "tokenizer_class": null,
187
+ "top_k": 50,
188
+ "top_p": 1.0,
189
+ "torch_dtype": "bfloat16",
190
+ "torchscript": false,
191
+ "transformers_version": "4.37.2",
192
+ "typical_p": 1.0,
193
+ "use_bfloat16": true,
194
+ "use_flash_attn": true
195
+ }
196
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import os
8
+ from typing import Union
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+
16
+ class InternVisionConfig(PretrainedConfig):
17
+ r"""
18
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
19
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
20
+
21
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
22
+ documentation from [`PretrainedConfig`] for more information.
23
+
24
+ Args:
25
+ num_channels (`int`, *optional*, defaults to 3):
26
+ Number of color channels in the input images (e.g., 3 for RGB).
27
+ patch_size (`int`, *optional*, defaults to 14):
28
+ The size (resolution) of each patch.
29
+ image_size (`int`, *optional*, defaults to 224):
30
+ The size (resolution) of each image.
31
+ qkv_bias (`bool`, *optional*, defaults to `False`):
32
+ Whether to add a bias to the queries and values in the self-attention layers.
33
+ hidden_size (`int`, *optional*, defaults to 3200):
34
+ Dimensionality of the encoder layers and the pooler layer.
35
+ num_attention_heads (`int`, *optional*, defaults to 25):
36
+ Number of attention heads for each attention layer in the Transformer encoder.
37
+ intermediate_size (`int`, *optional*, defaults to 12800):
38
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
39
+ qk_normalization (`bool`, *optional*, defaults to `True`):
40
+ Whether to normalize the queries and keys in the self-attention layers.
41
+ num_hidden_layers (`int`, *optional*, defaults to 48):
42
+ Number of hidden layers in the Transformer encoder.
43
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
44
+ Whether to use flash attention mechanism.
45
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
46
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
47
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
48
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
49
+ The epsilon used by the layer normalization layers.
50
+ dropout (`float`, *optional*, defaults to 0.0):
51
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
52
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
53
+ Dropout rate for stochastic depth.
54
+ attention_dropout (`float`, *optional*, defaults to 0.0):
55
+ The dropout ratio for the attention probabilities.
56
+ initializer_range (`float`, *optional*, defaults to 0.02):
57
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
58
+ initializer_factor (`float`, *optional*, defaults to 0.1):
59
+ A factor for layer scale.
60
+ """
61
+
62
+ model_type = 'intern_vit_6b'
63
+
64
+ def __init__(
65
+ self,
66
+ num_channels=3,
67
+ patch_size=14,
68
+ image_size=224,
69
+ qkv_bias=False,
70
+ hidden_size=3200,
71
+ num_attention_heads=25,
72
+ intermediate_size=12800,
73
+ qk_normalization=True,
74
+ num_hidden_layers=48,
75
+ use_flash_attn=True,
76
+ hidden_act='gelu',
77
+ norm_type='rms_norm',
78
+ layer_norm_eps=1e-6,
79
+ dropout=0.0,
80
+ drop_path_rate=0.0,
81
+ attention_dropout=0.0,
82
+ initializer_range=0.02,
83
+ initializer_factor=0.1,
84
+ **kwargs,
85
+ ):
86
+ super().__init__(**kwargs)
87
+
88
+ self.hidden_size = hidden_size
89
+ self.intermediate_size = intermediate_size
90
+ self.dropout = dropout
91
+ self.drop_path_rate = drop_path_rate
92
+ self.num_hidden_layers = num_hidden_layers
93
+ self.num_attention_heads = num_attention_heads
94
+ self.num_channels = num_channels
95
+ self.patch_size = patch_size
96
+ self.image_size = image_size
97
+ self.initializer_range = initializer_range
98
+ self.initializer_factor = initializer_factor
99
+ self.attention_dropout = attention_dropout
100
+ self.layer_norm_eps = layer_norm_eps
101
+ self.hidden_act = hidden_act
102
+ self.norm_type = norm_type
103
+ self.qkv_bias = qkv_bias
104
+ self.qk_normalization = qk_normalization
105
+ self.use_flash_attn = use_flash_attn
106
+
107
+ @classmethod
108
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
109
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
110
+
111
+ if 'vision_config' in config_dict:
112
+ config_dict = config_dict['vision_config']
113
+
114
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
115
+ logger.warning(
116
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
117
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
118
+ )
119
+
120
+ return cls.from_dict(config_dict, **kwargs)
configuration_internlm2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ InternLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
27
+ class InternLM2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = 'internlm2'
75
+ _auto_class = 'AutoConfig'
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act='silu',
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation='eager',
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = 'eager'
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
141
+ f'got {self.rope_scaling}'
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get('type', None)
144
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
configuration_internvl_chat.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig, Qwen2Config
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+
15
+ logger = logging.get_logger(__name__)
16
+
17
+
18
+ class InternVLChatConfig(PretrainedConfig):
19
+ model_type = 'internvl_chat'
20
+ is_composition = True
21
+
22
+ def __init__(
23
+ self,
24
+ vision_config=None,
25
+ llm_config=None,
26
+ use_backbone_lora=0,
27
+ use_llm_lora=0,
28
+ select_layer=-1,
29
+ force_image_size=None,
30
+ downsample_ratio=0.5,
31
+ template=None,
32
+ dynamic_image_size=False,
33
+ use_thumbnail=False,
34
+ ps_version='v1',
35
+ min_dynamic_patch=1,
36
+ max_dynamic_patch=6,
37
+ **kwargs):
38
+ super().__init__(**kwargs)
39
+
40
+ if vision_config is None:
41
+ vision_config = {'architectures': ['InternVisionModel']}
42
+ vision_config = {}
43
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
44
+
45
+ if llm_config is None:
46
+ llm_config = {'architectures': ['Qwen2ForCausalLM']}
47
+ llm_config = {}
48
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
49
+
50
+ self.vision_config = InternVisionConfig(**vision_config)
51
+ if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
52
+ self.llm_config = LlamaConfig(**llm_config)
53
+ elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
54
+ self.llm_config = Qwen2Config(**llm_config)
55
+ else:
56
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
57
+ self.use_backbone_lora = use_backbone_lora
58
+ self.use_llm_lora = use_llm_lora
59
+ self.select_layer = select_layer
60
+ self.force_image_size = force_image_size
61
+ self.downsample_ratio = downsample_ratio
62
+ self.template = template
63
+ self.dynamic_image_size = dynamic_image_size
64
+ self.use_thumbnail = use_thumbnail
65
+ self.ps_version = ps_version # pixel shuffle version
66
+ self.min_dynamic_patch = min_dynamic_patch
67
+ self.max_dynamic_patch = max_dynamic_patch
68
+
69
+ logger.info(f'vision_select_layer: {self.select_layer}')
70
+ logger.info(f'ps_version: {self.ps_version}')
71
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
72
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
73
+
74
+ def to_dict(self):
75
+ """
76
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
77
+
78
+ Returns:
79
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
80
+ """
81
+ output = copy.deepcopy(self.__dict__)
82
+ output['vision_config'] = self.vision_config.to_dict()
83
+ output['llm_config'] = self.llm_config.to_dict()
84
+ output['model_type'] = self.__class__.model_type
85
+ output['use_backbone_lora'] = self.use_backbone_lora
86
+ output['use_llm_lora'] = self.use_llm_lora
87
+ output['select_layer'] = self.select_layer
88
+ output['force_image_size'] = self.force_image_size
89
+ output['downsample_ratio'] = self.downsample_ratio
90
+ output['template'] = self.template
91
+ output['dynamic_image_size'] = self.dynamic_image_size
92
+ output['use_thumbnail'] = self.use_thumbnail
93
+ output['ps_version'] = self.ps_version
94
+ output['min_dynamic_patch'] = self.min_dynamic_patch
95
+ output['max_dynamic_patch'] = self.max_dynamic_patch
96
+
97
+ return output
conversation.py ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+
7
+ Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
8
+ """
9
+
10
+ import dataclasses
11
+ from enum import IntEnum, auto
12
+ from typing import Dict, List, Tuple, Union
13
+
14
+
15
+ class SeparatorStyle(IntEnum):
16
+ """Separator styles."""
17
+
18
+ ADD_COLON_SINGLE = auto()
19
+ ADD_COLON_TWO = auto()
20
+ ADD_COLON_SPACE_SINGLE = auto()
21
+ NO_COLON_SINGLE = auto()
22
+ NO_COLON_TWO = auto()
23
+ ADD_NEW_LINE_SINGLE = auto()
24
+ LLAMA2 = auto()
25
+ CHATGLM = auto()
26
+ CHATML = auto()
27
+ CHATINTERN = auto()
28
+ DOLLY = auto()
29
+ RWKV = auto()
30
+ PHOENIX = auto()
31
+ ROBIN = auto()
32
+ FALCON_CHAT = auto()
33
+ CHATGLM3 = auto()
34
+ INTERNVL_ZH = auto()
35
+ MPT = auto()
36
+
37
+
38
+ @dataclasses.dataclass
39
+ class Conversation:
40
+ """A class that manages prompt templates and keeps all conversation history."""
41
+
42
+ # The name of this template
43
+ name: str
44
+ # The template of the system prompt
45
+ system_template: str = '{system_message}'
46
+ # The system message
47
+ system_message: str = ''
48
+ # The names of two roles
49
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
50
+ # All messages. Each item is (role, message).
51
+ messages: List[List[str]] = ()
52
+ # The number of few shot examples
53
+ offset: int = 0
54
+ # The separator style and configurations
55
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
56
+ sep: str = '\n'
57
+ sep2: str = None
58
+ # Stop criteria (the default one is EOS token)
59
+ stop_str: Union[str, List[str]] = None
60
+ # Stops generation if meeting any token in this list
61
+ stop_token_ids: List[int] = None
62
+
63
+ def get_prompt(self) -> str:
64
+ """Get the prompt for generation."""
65
+ system_prompt = self.system_template.format(system_message=self.system_message)
66
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
67
+ ret = system_prompt + self.sep
68
+ for role, message in self.messages:
69
+ if message:
70
+ ret += role + ': ' + message + self.sep
71
+ else:
72
+ ret += role + ':'
73
+ return ret
74
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
75
+ seps = [self.sep, self.sep2]
76
+ ret = system_prompt + seps[0]
77
+ for i, (role, message) in enumerate(self.messages):
78
+ if message:
79
+ ret += role + ': ' + message + seps[i % 2]
80
+ else:
81
+ ret += role + ':'
82
+ return ret
83
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
84
+ ret = system_prompt + self.sep
85
+ for role, message in self.messages:
86
+ if message:
87
+ ret += role + ': ' + message + self.sep
88
+ else:
89
+ ret += role + ': ' # must be end with a space
90
+ return ret
91
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
92
+ ret = '' if system_prompt == '' else system_prompt + self.sep
93
+ for role, message in self.messages:
94
+ if message:
95
+ ret += role + '\n' + message + self.sep
96
+ else:
97
+ ret += role + '\n'
98
+ return ret
99
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
100
+ ret = system_prompt
101
+ for role, message in self.messages:
102
+ if message:
103
+ ret += role + message + self.sep
104
+ else:
105
+ ret += role
106
+ return ret
107
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
108
+ seps = [self.sep, self.sep2]
109
+ ret = system_prompt
110
+ for i, (role, message) in enumerate(self.messages):
111
+ if message:
112
+ ret += role + message + seps[i % 2]
113
+ else:
114
+ ret += role
115
+ return ret
116
+ elif self.sep_style == SeparatorStyle.RWKV:
117
+ ret = system_prompt
118
+ for i, (role, message) in enumerate(self.messages):
119
+ if message:
120
+ ret += (
121
+ role
122
+ + ': '
123
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
124
+ )
125
+ ret += '\n\n'
126
+ else:
127
+ ret += role + ':'
128
+ return ret
129
+ elif self.sep_style == SeparatorStyle.LLAMA2:
130
+ seps = [self.sep, self.sep2]
131
+ if self.system_message:
132
+ ret = system_prompt
133
+ else:
134
+ ret = '[INST] '
135
+ for i, (role, message) in enumerate(self.messages):
136
+ tag = self.roles[i % 2]
137
+ if message:
138
+ if i == 0:
139
+ ret += message + ' '
140
+ else:
141
+ ret += tag + ' ' + message + seps[i % 2]
142
+ else:
143
+ ret += tag
144
+ return ret
145
+ elif self.sep_style == SeparatorStyle.CHATGLM:
146
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
147
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
148
+ round_add_n = 1 if self.name == 'chatglm2' else 0
149
+ if system_prompt:
150
+ ret = system_prompt + self.sep
151
+ else:
152
+ ret = ''
153
+
154
+ for i, (role, message) in enumerate(self.messages):
155
+ if i % 2 == 0:
156
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
157
+
158
+ if message:
159
+ ret += f'{role}:{message}{self.sep}'
160
+ else:
161
+ ret += f'{role}:'
162
+ return ret
163
+ elif self.sep_style == SeparatorStyle.CHATML:
164
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
165
+ for role, message in self.messages:
166
+ if message:
167
+ ret += role + '\n' + message + self.sep + '\n'
168
+ else:
169
+ ret += role + '\n'
170
+ return ret
171
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
172
+ ret = ''
173
+ if self.system_message:
174
+ ret += system_prompt
175
+ for role, message in self.messages:
176
+ if message:
177
+ ret += role + '\n' + ' ' + message
178
+ else:
179
+ ret += role
180
+ return ret
181
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
182
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
183
+ seps = [self.sep, self.sep2]
184
+ ret = system_prompt
185
+ for i, (role, message) in enumerate(self.messages):
186
+ # if i % 2 == 0:
187
+ # ret += "<s>"
188
+ if message:
189
+ ret += role + ':' + message + seps[i % 2] + '\n'
190
+ else:
191
+ ret += role + ':'
192
+ return ret
193
+ elif self.sep_style == SeparatorStyle.DOLLY:
194
+ seps = [self.sep, self.sep2]
195
+ ret = system_prompt
196
+ for i, (role, message) in enumerate(self.messages):
197
+ if message:
198
+ ret += role + ':\n' + message + seps[i % 2]
199
+ if i % 2 == 1:
200
+ ret += '\n\n'
201
+ else:
202
+ ret += role + ':\n'
203
+ return ret
204
+ elif self.sep_style == SeparatorStyle.PHOENIX:
205
+ ret = system_prompt
206
+ for role, message in self.messages:
207
+ if message:
208
+ ret += role + ': ' + '<s>' + message + '</s>'
209
+ else:
210
+ ret += role + ': ' + '<s>'
211
+ return ret
212
+ elif self.sep_style == SeparatorStyle.ROBIN:
213
+ ret = system_prompt + self.sep
214
+ for role, message in self.messages:
215
+ if message:
216
+ ret += role + ':\n' + message + self.sep
217
+ else:
218
+ ret += role + ':\n'
219
+ return ret
220
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
221
+ ret = ''
222
+ if self.system_message:
223
+ ret += system_prompt + self.sep
224
+ for role, message in self.messages:
225
+ if message:
226
+ ret += role + ': ' + message + self.sep
227
+ else:
228
+ ret += role + ':'
229
+
230
+ return ret
231
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
232
+ seps = [self.sep, self.sep2]
233
+ ret = self.system_message + seps[0]
234
+ for i, (role, message) in enumerate(self.messages):
235
+ if message:
236
+ ret += role + ': ' + message + seps[i % 2]
237
+ else:
238
+ ret += role + ':'
239
+ return ret
240
+ elif self.sep_style == SeparatorStyle.MPT:
241
+ ret = system_prompt + self.sep
242
+ for role, message in self.messages:
243
+ if message:
244
+ if type(message) is tuple:
245
+ message, _, _ = message
246
+ ret += role + message + self.sep
247
+ else:
248
+ ret += role
249
+ return ret
250
+ else:
251
+ raise ValueError(f'Invalid style: {self.sep_style}')
252
+
253
+ def set_system_message(self, system_message: str):
254
+ """Set the system message."""
255
+ self.system_message = system_message
256
+
257
+ def append_message(self, role: str, message: str):
258
+ """Append a new message."""
259
+ self.messages.append([role, message])
260
+
261
+ def update_last_message(self, message: str):
262
+ """Update the last output.
263
+
264
+ The last message is typically set to be None when constructing the prompt,
265
+ so we need to update it in-place after getting the response from a model.
266
+ """
267
+ self.messages[-1][1] = message
268
+
269
+ def to_gradio_chatbot(self):
270
+ """Convert the conversation to gradio chatbot format."""
271
+ ret = []
272
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
273
+ if i % 2 == 0:
274
+ ret.append([msg, None])
275
+ else:
276
+ ret[-1][-1] = msg
277
+ return ret
278
+
279
+ def to_openai_api_messages(self):
280
+ """Convert the conversation to OpenAI chat completion format."""
281
+ ret = [{'role': 'system', 'content': self.system_message}]
282
+
283
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
284
+ if i % 2 == 0:
285
+ ret.append({'role': 'user', 'content': msg})
286
+ else:
287
+ if msg is not None:
288
+ ret.append({'role': 'assistant', 'content': msg})
289
+ return ret
290
+
291
+ def copy(self):
292
+ return Conversation(
293
+ name=self.name,
294
+ system_template=self.system_template,
295
+ system_message=self.system_message,
296
+ roles=self.roles,
297
+ messages=[[x, y] for x, y in self.messages],
298
+ offset=self.offset,
299
+ sep_style=self.sep_style,
300
+ sep=self.sep,
301
+ sep2=self.sep2,
302
+ stop_str=self.stop_str,
303
+ stop_token_ids=self.stop_token_ids,
304
+ )
305
+
306
+ def dict(self):
307
+ return {
308
+ 'template_name': self.name,
309
+ 'system_message': self.system_message,
310
+ 'roles': self.roles,
311
+ 'messages': self.messages,
312
+ 'offset': self.offset,
313
+ }
314
+
315
+
316
+ # A global registry for all conversation templates
317
+ conv_templates: Dict[str, Conversation] = {}
318
+
319
+
320
+ def register_conv_template(template: Conversation, override: bool = False):
321
+ """Register a new conversation template."""
322
+ if not override:
323
+ assert (
324
+ template.name not in conv_templates
325
+ ), f'{template.name} has been registered.'
326
+
327
+ conv_templates[template.name] = template
328
+
329
+
330
+ def get_conv_template(name: str) -> Conversation:
331
+ """Get a conversation template."""
332
+ return conv_templates[name].copy()
333
+
334
+
335
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
336
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
337
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
338
+ # Therefore, they are completely equivalent during inference.
339
+ register_conv_template(
340
+ Conversation(
341
+ name='Hermes-2',
342
+ system_template='<|im_start|>system\n{system_message}',
343
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
344
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
345
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
346
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
347
+ sep_style=SeparatorStyle.MPT,
348
+ sep='<|im_end|>',
349
+ stop_str='<|endoftext|>',
350
+ )
351
+ )
352
+
353
+
354
+ register_conv_template(
355
+ Conversation(
356
+ name='internlm2-chat',
357
+ system_template='<|im_start|>system\n{system_message}',
358
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
359
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
360
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
361
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
362
+ sep_style=SeparatorStyle.MPT,
363
+ sep='<|im_end|>',
364
+ )
365
+ )
366
+
367
+
368
+ register_conv_template(
369
+ Conversation(
370
+ name='phi3-chat',
371
+ system_template='<|system|>\n{system_message}',
372
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
373
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
374
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
375
+ roles=('<|user|>\n', '<|assistant|>\n'),
376
+ sep_style=SeparatorStyle.MPT,
377
+ sep='<|end|>',
378
+ )
379
+ )
380
+
381
+
382
+ register_conv_template(
383
+ Conversation(
384
+ name='internvl2_5',
385
+ system_template='<|im_start|>system\n{system_message}',
386
+ system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
387
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
388
+ sep_style=SeparatorStyle.MPT,
389
+ sep='<|im_end|>\n',
390
+ )
391
+ )
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": [
4
+ 151644,
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "transformers_version": "4.37.2"
9
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96a3f7c3ac0cbf44ec2d24cf6270c97b6a8369040d380832c4b6883a3176e90f
3
+ size 4993064520
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecbd6dc2bd72263252ac84c3c4398c33ea087272f51d35d8ea4e8db4e26069fa
3
+ size 2432390128
model.safetensors.index.json ADDED
@@ -0,0 +1,788 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 7425357824
4
+ },
5
+ "weight_map": {
6
+ "language_model.lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "language_model.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "language_model.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "language_model.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "language_model.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "language_model.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "language_model.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "language_model.model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "language_model.model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "language_model.model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "language_model.model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "language_model.model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "language_model.model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "language_model.model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "language_model.model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "language_model.model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "language_model.model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "language_model.model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "language_model.model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "language_model.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "language_model.model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "language_model.model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "language_model.model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "language_model.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "language_model.model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "language_model.model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "language_model.model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "language_model.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "language_model.model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "language_model.model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "language_model.model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "language_model.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "language_model.model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "language_model.model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "language_model.model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "language_model.model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "language_model.model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "language_model.model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "language_model.model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "language_model.model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "language_model.model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "language_model.model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "language_model.model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "language_model.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "language_model.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "language_model.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "language_model.model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "language_model.model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "language_model.model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "language_model.model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "language_model.model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "language_model.model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "language_model.model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "language_model.model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "language_model.model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "language_model.model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "language_model.model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "language_model.model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "language_model.model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "language_model.model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "language_model.model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "language_model.model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
213
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
214
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
216
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
217
+ "language_model.model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "language_model.model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "language_model.model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
225
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
226
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
227
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
228
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
229
+ "language_model.model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
230
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
231
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
232
+ "language_model.model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
233
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
234
+ "language_model.model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
235
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
236
+ "language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
237
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
238
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
239
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
240
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
241
+ "language_model.model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
242
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
243
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
244
+ "language_model.model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
245
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
246
+ "language_model.model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
247
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
248
+ "language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
249
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
250
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
251
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
252
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
253
+ "language_model.model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
254
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
255
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
256
+ "language_model.model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
257
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
258
+ "language_model.model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
259
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
260
+ "language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "language_model.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "language_model.model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "language_model.model.layers.28.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
266
+ "language_model.model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
267
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
268
+ "language_model.model.layers.28.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
269
+ "language_model.model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
270
+ "language_model.model.layers.28.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
271
+ "language_model.model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
272
+ "language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "language_model.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "language_model.model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "language_model.model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "language_model.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "language_model.model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "language_model.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "language_model.model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "language_model.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "language_model.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "language_model.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "language_model.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "language_model.model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "language_model.model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "language_model.model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "language_model.model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "language_model.model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "language_model.model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "language_model.model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "language_model.model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "language_model.model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "language_model.model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "language_model.model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "language_model.model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "language_model.model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "language_model.model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "language_model.model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "language_model.model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "language_model.model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "language_model.model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "language_model.model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "language_model.model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "language_model.model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "language_model.model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "language_model.model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "language_model.model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "language_model.model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "language_model.model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "language_model.model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "language_model.model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "language_model.model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "language_model.model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "language_model.model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "language_model.model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "language_model.model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "language_model.model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "language_model.model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "language_model.model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "language_model.model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "language_model.model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "language_model.model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "language_model.model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "language_model.model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "language_model.model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "language_model.model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "language_model.model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "language_model.model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "language_model.model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "language_model.model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "language_model.model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "language_model.model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "language_model.model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "language_model.model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "language_model.model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "language_model.model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "language_model.model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "language_model.model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "language_model.model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "language_model.model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "language_model.model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "language_model.model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "language_model.model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "language_model.model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "language_model.model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "language_model.model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "language_model.model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "language_model.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "language_model.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "language_model.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "language_model.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "language_model.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "language_model.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "language_model.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "language_model.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "language_model.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "language_model.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "language_model.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "language_model.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "language_model.model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "language_model.model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "language_model.model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "language_model.model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "language_model.model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "language_model.model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "language_model.model.norm.weight": "model-00002-of-00002.safetensors",
441
+ "mlp1.0.bias": "model-00002-of-00002.safetensors",
442
+ "mlp1.0.weight": "model-00002-of-00002.safetensors",
443
+ "mlp1.1.bias": "model-00002-of-00002.safetensors",
444
+ "mlp1.1.weight": "model-00002-of-00002.safetensors",
445
+ "mlp1.3.bias": "model-00002-of-00002.safetensors",
446
+ "mlp1.3.weight": "model-00002-of-00002.safetensors",
447
+ "vision_model.embeddings.class_embedding": "model-00001-of-00002.safetensors",
448
+ "vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
449
+ "vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
450
+ "vision_model.embeddings.position_embedding": "model-00001-of-00002.safetensors",
451
+ "vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00002.safetensors",
452
+ "vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00002.safetensors",
453
+ "vision_model.encoder.layers.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
454
+ "vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
455
+ "vision_model.encoder.layers.0.ls1": "model-00001-of-00002.safetensors",
456
+ "vision_model.encoder.layers.0.ls2": "model-00001-of-00002.safetensors",
457
+ "vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
458
+ "vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
459
+ "vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
460
+ "vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
461
+ "vision_model.encoder.layers.0.norm1.bias": "model-00001-of-00002.safetensors",
462
+ "vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00002.safetensors",
463
+ "vision_model.encoder.layers.0.norm2.bias": "model-00001-of-00002.safetensors",
464
+ "vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00002.safetensors",
465
+ "vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00002.safetensors",
466
+ "vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00002.safetensors",
467
+ "vision_model.encoder.layers.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
468
+ "vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
469
+ "vision_model.encoder.layers.1.ls1": "model-00001-of-00002.safetensors",
470
+ "vision_model.encoder.layers.1.ls2": "model-00001-of-00002.safetensors",
471
+ "vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
472
+ "vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
473
+ "vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
474
+ "vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
475
+ "vision_model.encoder.layers.1.norm1.bias": "model-00001-of-00002.safetensors",
476
+ "vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00002.safetensors",
477
+ "vision_model.encoder.layers.1.norm2.bias": "model-00001-of-00002.safetensors",
478
+ "vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00002.safetensors",
479
+ "vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00002.safetensors",
480
+ "vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00002.safetensors",
481
+ "vision_model.encoder.layers.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
482
+ "vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
483
+ "vision_model.encoder.layers.10.ls1": "model-00001-of-00002.safetensors",
484
+ "vision_model.encoder.layers.10.ls2": "model-00001-of-00002.safetensors",
485
+ "vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
486
+ "vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
487
+ "vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
488
+ "vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
489
+ "vision_model.encoder.layers.10.norm1.bias": "model-00001-of-00002.safetensors",
490
+ "vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00002.safetensors",
491
+ "vision_model.encoder.layers.10.norm2.bias": "model-00001-of-00002.safetensors",
492
+ "vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00002.safetensors",
493
+ "vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00002.safetensors",
494
+ "vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00002.safetensors",
495
+ "vision_model.encoder.layers.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
496
+ "vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
497
+ "vision_model.encoder.layers.11.ls1": "model-00001-of-00002.safetensors",
498
+ "vision_model.encoder.layers.11.ls2": "model-00001-of-00002.safetensors",
499
+ "vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
500
+ "vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
501
+ "vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
502
+ "vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
503
+ "vision_model.encoder.layers.11.norm1.bias": "model-00001-of-00002.safetensors",
504
+ "vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00002.safetensors",
505
+ "vision_model.encoder.layers.11.norm2.bias": "model-00001-of-00002.safetensors",
506
+ "vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00002.safetensors",
507
+ "vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00002.safetensors",
508
+ "vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00002.safetensors",
509
+ "vision_model.encoder.layers.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
510
+ "vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
511
+ "vision_model.encoder.layers.12.ls1": "model-00001-of-00002.safetensors",
512
+ "vision_model.encoder.layers.12.ls2": "model-00001-of-00002.safetensors",
513
+ "vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
514
+ "vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
515
+ "vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
516
+ "vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
517
+ "vision_model.encoder.layers.12.norm1.bias": "model-00001-of-00002.safetensors",
518
+ "vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00002.safetensors",
519
+ "vision_model.encoder.layers.12.norm2.bias": "model-00001-of-00002.safetensors",
520
+ "vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00002.safetensors",
521
+ "vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00002.safetensors",
522
+ "vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00002.safetensors",
523
+ "vision_model.encoder.layers.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
524
+ "vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
525
+ "vision_model.encoder.layers.13.ls1": "model-00001-of-00002.safetensors",
526
+ "vision_model.encoder.layers.13.ls2": "model-00001-of-00002.safetensors",
527
+ "vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
528
+ "vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
529
+ "vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
530
+ "vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
531
+ "vision_model.encoder.layers.13.norm1.bias": "model-00001-of-00002.safetensors",
532
+ "vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00002.safetensors",
533
+ "vision_model.encoder.layers.13.norm2.bias": "model-00001-of-00002.safetensors",
534
+ "vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00002.safetensors",
535
+ "vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00002.safetensors",
536
+ "vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00002.safetensors",
537
+ "vision_model.encoder.layers.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
538
+ "vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
539
+ "vision_model.encoder.layers.14.ls1": "model-00001-of-00002.safetensors",
540
+ "vision_model.encoder.layers.14.ls2": "model-00001-of-00002.safetensors",
541
+ "vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
542
+ "vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
543
+ "vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
544
+ "vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
545
+ "vision_model.encoder.layers.14.norm1.bias": "model-00001-of-00002.safetensors",
546
+ "vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00002.safetensors",
547
+ "vision_model.encoder.layers.14.norm2.bias": "model-00001-of-00002.safetensors",
548
+ "vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00002.safetensors",
549
+ "vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00002.safetensors",
550
+ "vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00002.safetensors",
551
+ "vision_model.encoder.layers.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
552
+ "vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
553
+ "vision_model.encoder.layers.15.ls1": "model-00001-of-00002.safetensors",
554
+ "vision_model.encoder.layers.15.ls2": "model-00001-of-00002.safetensors",
555
+ "vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
556
+ "vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
557
+ "vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
558
+ "vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
559
+ "vision_model.encoder.layers.15.norm1.bias": "model-00001-of-00002.safetensors",
560
+ "vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00002.safetensors",
561
+ "vision_model.encoder.layers.15.norm2.bias": "model-00001-of-00002.safetensors",
562
+ "vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00002.safetensors",
563
+ "vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00002.safetensors",
564
+ "vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00002.safetensors",
565
+ "vision_model.encoder.layers.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
566
+ "vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
567
+ "vision_model.encoder.layers.16.ls1": "model-00001-of-00002.safetensors",
568
+ "vision_model.encoder.layers.16.ls2": "model-00001-of-00002.safetensors",
569
+ "vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
570
+ "vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
571
+ "vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
572
+ "vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
573
+ "vision_model.encoder.layers.16.norm1.bias": "model-00001-of-00002.safetensors",
574
+ "vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00002.safetensors",
575
+ "vision_model.encoder.layers.16.norm2.bias": "model-00001-of-00002.safetensors",
576
+ "vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00002.safetensors",
577
+ "vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00002.safetensors",
578
+ "vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00002.safetensors",
579
+ "vision_model.encoder.layers.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
580
+ "vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
581
+ "vision_model.encoder.layers.17.ls1": "model-00001-of-00002.safetensors",
582
+ "vision_model.encoder.layers.17.ls2": "model-00001-of-00002.safetensors",
583
+ "vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
584
+ "vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
585
+ "vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
586
+ "vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
587
+ "vision_model.encoder.layers.17.norm1.bias": "model-00001-of-00002.safetensors",
588
+ "vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00002.safetensors",
589
+ "vision_model.encoder.layers.17.norm2.bias": "model-00001-of-00002.safetensors",
590
+ "vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00002.safetensors",
591
+ "vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00002.safetensors",
592
+ "vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00002.safetensors",
593
+ "vision_model.encoder.layers.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
594
+ "vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
595
+ "vision_model.encoder.layers.18.ls1": "model-00001-of-00002.safetensors",
596
+ "vision_model.encoder.layers.18.ls2": "model-00001-of-00002.safetensors",
597
+ "vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
598
+ "vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
599
+ "vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
600
+ "vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
601
+ "vision_model.encoder.layers.18.norm1.bias": "model-00001-of-00002.safetensors",
602
+ "vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00002.safetensors",
603
+ "vision_model.encoder.layers.18.norm2.bias": "model-00001-of-00002.safetensors",
604
+ "vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00002.safetensors",
605
+ "vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00002.safetensors",
606
+ "vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00002.safetensors",
607
+ "vision_model.encoder.layers.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
608
+ "vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
609
+ "vision_model.encoder.layers.19.ls1": "model-00001-of-00002.safetensors",
610
+ "vision_model.encoder.layers.19.ls2": "model-00001-of-00002.safetensors",
611
+ "vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
612
+ "vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
613
+ "vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
614
+ "vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
615
+ "vision_model.encoder.layers.19.norm1.bias": "model-00001-of-00002.safetensors",
616
+ "vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00002.safetensors",
617
+ "vision_model.encoder.layers.19.norm2.bias": "model-00001-of-00002.safetensors",
618
+ "vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00002.safetensors",
619
+ "vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00002.safetensors",
620
+ "vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00002.safetensors",
621
+ "vision_model.encoder.layers.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
622
+ "vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
623
+ "vision_model.encoder.layers.2.ls1": "model-00001-of-00002.safetensors",
624
+ "vision_model.encoder.layers.2.ls2": "model-00001-of-00002.safetensors",
625
+ "vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
626
+ "vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
627
+ "vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
628
+ "vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
629
+ "vision_model.encoder.layers.2.norm1.bias": "model-00001-of-00002.safetensors",
630
+ "vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00002.safetensors",
631
+ "vision_model.encoder.layers.2.norm2.bias": "model-00001-of-00002.safetensors",
632
+ "vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00002.safetensors",
633
+ "vision_model.encoder.layers.20.attn.proj.bias": "model-00001-of-00002.safetensors",
634
+ "vision_model.encoder.layers.20.attn.proj.weight": "model-00001-of-00002.safetensors",
635
+ "vision_model.encoder.layers.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
636
+ "vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
637
+ "vision_model.encoder.layers.20.ls1": "model-00001-of-00002.safetensors",
638
+ "vision_model.encoder.layers.20.ls2": "model-00001-of-00002.safetensors",
639
+ "vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
640
+ "vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
641
+ "vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
642
+ "vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
643
+ "vision_model.encoder.layers.20.norm1.bias": "model-00001-of-00002.safetensors",
644
+ "vision_model.encoder.layers.20.norm1.weight": "model-00001-of-00002.safetensors",
645
+ "vision_model.encoder.layers.20.norm2.bias": "model-00001-of-00002.safetensors",
646
+ "vision_model.encoder.layers.20.norm2.weight": "model-00001-of-00002.safetensors",
647
+ "vision_model.encoder.layers.21.attn.proj.bias": "model-00001-of-00002.safetensors",
648
+ "vision_model.encoder.layers.21.attn.proj.weight": "model-00001-of-00002.safetensors",
649
+ "vision_model.encoder.layers.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
650
+ "vision_model.encoder.layers.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
651
+ "vision_model.encoder.layers.21.ls1": "model-00001-of-00002.safetensors",
652
+ "vision_model.encoder.layers.21.ls2": "model-00001-of-00002.safetensors",
653
+ "vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
654
+ "vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
655
+ "vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
656
+ "vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
657
+ "vision_model.encoder.layers.21.norm1.bias": "model-00001-of-00002.safetensors",
658
+ "vision_model.encoder.layers.21.norm1.weight": "model-00001-of-00002.safetensors",
659
+ "vision_model.encoder.layers.21.norm2.bias": "model-00001-of-00002.safetensors",
660
+ "vision_model.encoder.layers.21.norm2.weight": "model-00001-of-00002.safetensors",
661
+ "vision_model.encoder.layers.22.attn.proj.bias": "model-00001-of-00002.safetensors",
662
+ "vision_model.encoder.layers.22.attn.proj.weight": "model-00001-of-00002.safetensors",
663
+ "vision_model.encoder.layers.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
664
+ "vision_model.encoder.layers.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
665
+ "vision_model.encoder.layers.22.ls1": "model-00001-of-00002.safetensors",
666
+ "vision_model.encoder.layers.22.ls2": "model-00001-of-00002.safetensors",
667
+ "vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
668
+ "vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
669
+ "vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
670
+ "vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
671
+ "vision_model.encoder.layers.22.norm1.bias": "model-00001-of-00002.safetensors",
672
+ "vision_model.encoder.layers.22.norm1.weight": "model-00001-of-00002.safetensors",
673
+ "vision_model.encoder.layers.22.norm2.bias": "model-00001-of-00002.safetensors",
674
+ "vision_model.encoder.layers.22.norm2.weight": "model-00001-of-00002.safetensors",
675
+ "vision_model.encoder.layers.23.attn.proj.bias": "model-00001-of-00002.safetensors",
676
+ "vision_model.encoder.layers.23.attn.proj.weight": "model-00001-of-00002.safetensors",
677
+ "vision_model.encoder.layers.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
678
+ "vision_model.encoder.layers.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
679
+ "vision_model.encoder.layers.23.ls1": "model-00001-of-00002.safetensors",
680
+ "vision_model.encoder.layers.23.ls2": "model-00001-of-00002.safetensors",
681
+ "vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
682
+ "vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
683
+ "vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
684
+ "vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
685
+ "vision_model.encoder.layers.23.norm1.bias": "model-00001-of-00002.safetensors",
686
+ "vision_model.encoder.layers.23.norm1.weight": "model-00001-of-00002.safetensors",
687
+ "vision_model.encoder.layers.23.norm2.bias": "model-00001-of-00002.safetensors",
688
+ "vision_model.encoder.layers.23.norm2.weight": "model-00001-of-00002.safetensors",
689
+ "vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00002.safetensors",
690
+ "vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00002.safetensors",
691
+ "vision_model.encoder.layers.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
692
+ "vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
693
+ "vision_model.encoder.layers.3.ls1": "model-00001-of-00002.safetensors",
694
+ "vision_model.encoder.layers.3.ls2": "model-00001-of-00002.safetensors",
695
+ "vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
696
+ "vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
697
+ "vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
698
+ "vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
699
+ "vision_model.encoder.layers.3.norm1.bias": "model-00001-of-00002.safetensors",
700
+ "vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00002.safetensors",
701
+ "vision_model.encoder.layers.3.norm2.bias": "model-00001-of-00002.safetensors",
702
+ "vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00002.safetensors",
703
+ "vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00002.safetensors",
704
+ "vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00002.safetensors",
705
+ "vision_model.encoder.layers.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
706
+ "vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
707
+ "vision_model.encoder.layers.4.ls1": "model-00001-of-00002.safetensors",
708
+ "vision_model.encoder.layers.4.ls2": "model-00001-of-00002.safetensors",
709
+ "vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
710
+ "vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
711
+ "vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
712
+ "vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
713
+ "vision_model.encoder.layers.4.norm1.bias": "model-00001-of-00002.safetensors",
714
+ "vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00002.safetensors",
715
+ "vision_model.encoder.layers.4.norm2.bias": "model-00001-of-00002.safetensors",
716
+ "vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00002.safetensors",
717
+ "vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00002.safetensors",
718
+ "vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00002.safetensors",
719
+ "vision_model.encoder.layers.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
720
+ "vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
721
+ "vision_model.encoder.layers.5.ls1": "model-00001-of-00002.safetensors",
722
+ "vision_model.encoder.layers.5.ls2": "model-00001-of-00002.safetensors",
723
+ "vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
724
+ "vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
725
+ "vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
726
+ "vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
727
+ "vision_model.encoder.layers.5.norm1.bias": "model-00001-of-00002.safetensors",
728
+ "vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00002.safetensors",
729
+ "vision_model.encoder.layers.5.norm2.bias": "model-00001-of-00002.safetensors",
730
+ "vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00002.safetensors",
731
+ "vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00002.safetensors",
732
+ "vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00002.safetensors",
733
+ "vision_model.encoder.layers.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
734
+ "vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
735
+ "vision_model.encoder.layers.6.ls1": "model-00001-of-00002.safetensors",
736
+ "vision_model.encoder.layers.6.ls2": "model-00001-of-00002.safetensors",
737
+ "vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
738
+ "vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
739
+ "vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
740
+ "vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
741
+ "vision_model.encoder.layers.6.norm1.bias": "model-00001-of-00002.safetensors",
742
+ "vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00002.safetensors",
743
+ "vision_model.encoder.layers.6.norm2.bias": "model-00001-of-00002.safetensors",
744
+ "vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00002.safetensors",
745
+ "vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00002.safetensors",
746
+ "vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00002.safetensors",
747
+ "vision_model.encoder.layers.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
748
+ "vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
749
+ "vision_model.encoder.layers.7.ls1": "model-00001-of-00002.safetensors",
750
+ "vision_model.encoder.layers.7.ls2": "model-00001-of-00002.safetensors",
751
+ "vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
752
+ "vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
753
+ "vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
754
+ "vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
755
+ "vision_model.encoder.layers.7.norm1.bias": "model-00001-of-00002.safetensors",
756
+ "vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00002.safetensors",
757
+ "vision_model.encoder.layers.7.norm2.bias": "model-00001-of-00002.safetensors",
758
+ "vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00002.safetensors",
759
+ "vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00002.safetensors",
760
+ "vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00002.safetensors",
761
+ "vision_model.encoder.layers.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
762
+ "vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
763
+ "vision_model.encoder.layers.8.ls1": "model-00001-of-00002.safetensors",
764
+ "vision_model.encoder.layers.8.ls2": "model-00001-of-00002.safetensors",
765
+ "vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
766
+ "vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
767
+ "vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
768
+ "vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
769
+ "vision_model.encoder.layers.8.norm1.bias": "model-00001-of-00002.safetensors",
770
+ "vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00002.safetensors",
771
+ "vision_model.encoder.layers.8.norm2.bias": "model-00001-of-00002.safetensors",
772
+ "vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00002.safetensors",
773
+ "vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00002.safetensors",
774
+ "vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00002.safetensors",
775
+ "vision_model.encoder.layers.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
776
+ "vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
777
+ "vision_model.encoder.layers.9.ls1": "model-00001-of-00002.safetensors",
778
+ "vision_model.encoder.layers.9.ls2": "model-00001-of-00002.safetensors",
779
+ "vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
780
+ "vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
781
+ "vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
782
+ "vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
783
+ "vision_model.encoder.layers.9.norm1.bias": "model-00001-of-00002.safetensors",
784
+ "vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00002.safetensors",
785
+ "vision_model.encoder.layers.9.norm2.bias": "model-00001-of-00002.safetensors",
786
+ "vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00002.safetensors"
787
+ }
788
+ }
modeling_intern_vit.py ADDED
@@ -0,0 +1,430 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ from typing import Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint
12
+ from einops import rearrange
13
+ from timm.models.layers import DropPath
14
+ from torch import nn
15
+ from transformers.activations import ACT2FN
16
+ from transformers.modeling_outputs import (BaseModelOutput,
17
+ BaseModelOutputWithPooling)
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import logging
20
+
21
+ from .configuration_intern_vit import InternVisionConfig
22
+
23
+ try:
24
+ from flash_attn.bert_padding import pad_input, unpad_input
25
+ from flash_attn.flash_attn_interface import \
26
+ flash_attn_varlen_qkvpacked_func
27
+ has_flash_attn = True
28
+ except:
29
+ print('FlashAttention2 is not installed.')
30
+ has_flash_attn = False
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+
35
+ class FlashAttention(nn.Module):
36
+ """Implement the scaled dot product attention with softmax.
37
+ Arguments
38
+ ---------
39
+ softmax_scale: The temperature to use for the softmax attention.
40
+ (default: 1/sqrt(d_keys) where d_keys is computed at
41
+ runtime)
42
+ attention_dropout: The dropout rate to apply to the attention
43
+ (default: 0.0)
44
+ """
45
+
46
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
47
+ super().__init__()
48
+ self.softmax_scale = softmax_scale
49
+ self.dropout_p = attention_dropout
50
+
51
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
52
+ max_s=None, need_weights=False):
53
+ """Implements the multihead softmax attention.
54
+ Arguments
55
+ ---------
56
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
57
+ if unpadded: (nnz, 3, h, d)
58
+ key_padding_mask: a bool tensor of shape (B, S)
59
+ """
60
+ assert not need_weights
61
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
62
+ assert qkv.is_cuda
63
+
64
+ if cu_seqlens is None:
65
+ batch_size = qkv.shape[0]
66
+ seqlen = qkv.shape[1]
67
+ if key_padding_mask is None:
68
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
69
+ max_s = seqlen
70
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
71
+ device=qkv.device)
72
+ output = flash_attn_varlen_qkvpacked_func(
73
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
74
+ softmax_scale=self.softmax_scale, causal=causal
75
+ )
76
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
77
+ else:
78
+ nheads = qkv.shape[-2]
79
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
80
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
81
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
82
+ output_unpad = flash_attn_varlen_qkvpacked_func(
83
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
84
+ softmax_scale=self.softmax_scale, causal=causal
85
+ )
86
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
87
+ indices, batch_size, seqlen),
88
+ 'b s (h d) -> b s h d', h=nheads)
89
+ else:
90
+ assert max_s is not None
91
+ output = flash_attn_varlen_qkvpacked_func(
92
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
93
+ softmax_scale=self.softmax_scale, causal=causal
94
+ )
95
+
96
+ return output, None
97
+
98
+
99
+ class InternRMSNorm(nn.Module):
100
+ def __init__(self, hidden_size, eps=1e-6):
101
+ super().__init__()
102
+ self.weight = nn.Parameter(torch.ones(hidden_size))
103
+ self.variance_epsilon = eps
104
+
105
+ def forward(self, hidden_states):
106
+ input_dtype = hidden_states.dtype
107
+ hidden_states = hidden_states.to(torch.float32)
108
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
109
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
110
+ return self.weight * hidden_states.to(input_dtype)
111
+
112
+
113
+ try:
114
+ from apex.normalization import FusedRMSNorm
115
+
116
+ InternRMSNorm = FusedRMSNorm # noqa
117
+
118
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
119
+ except ImportError:
120
+ # using the normal InternRMSNorm
121
+ pass
122
+ except Exception:
123
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
124
+ pass
125
+
126
+
127
+ NORM2FN = {
128
+ 'rms_norm': InternRMSNorm,
129
+ 'layer_norm': nn.LayerNorm,
130
+ }
131
+
132
+
133
+ class InternVisionEmbeddings(nn.Module):
134
+ def __init__(self, config: InternVisionConfig):
135
+ super().__init__()
136
+ self.config = config
137
+ self.embed_dim = config.hidden_size
138
+ self.image_size = config.image_size
139
+ self.patch_size = config.patch_size
140
+
141
+ self.class_embedding = nn.Parameter(
142
+ torch.randn(1, 1, self.embed_dim),
143
+ )
144
+
145
+ self.patch_embedding = nn.Conv2d(
146
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
147
+ )
148
+
149
+ self.num_patches = (self.image_size // self.patch_size) ** 2
150
+ self.num_positions = self.num_patches + 1
151
+
152
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
153
+
154
+ def _get_pos_embed(self, pos_embed, H, W):
155
+ target_dtype = pos_embed.dtype
156
+ pos_embed = pos_embed.float().reshape(
157
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
158
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
159
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
160
+ return pos_embed
161
+
162
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
163
+ target_dtype = self.patch_embedding.weight.dtype
164
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
165
+ batch_size, _, height, width = patch_embeds.shape
166
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
167
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
168
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
169
+ position_embedding = torch.cat([
170
+ self.position_embedding[:, :1, :],
171
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
172
+ ], dim=1)
173
+ embeddings = embeddings + position_embedding.to(target_dtype)
174
+ return embeddings
175
+
176
+
177
+ class InternAttention(nn.Module):
178
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
179
+
180
+ def __init__(self, config: InternVisionConfig):
181
+ super().__init__()
182
+ self.config = config
183
+ self.embed_dim = config.hidden_size
184
+ self.num_heads = config.num_attention_heads
185
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
186
+ if config.use_flash_attn and not has_flash_attn:
187
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
188
+ self.head_dim = self.embed_dim // self.num_heads
189
+ if self.head_dim * self.num_heads != self.embed_dim:
190
+ raise ValueError(
191
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
192
+ f' {self.num_heads}).'
193
+ )
194
+
195
+ self.scale = self.head_dim ** -0.5
196
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
197
+ self.attn_drop = nn.Dropout(config.attention_dropout)
198
+ self.proj_drop = nn.Dropout(config.dropout)
199
+
200
+ self.qk_normalization = config.qk_normalization
201
+
202
+ if self.qk_normalization:
203
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
205
+
206
+ if self.use_flash_attn:
207
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
208
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
209
+
210
+ def _naive_attn(self, x):
211
+ B, N, C = x.shape
212
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
213
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
214
+
215
+ if self.qk_normalization:
216
+ B_, H_, N_, D_ = q.shape
217
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
219
+
220
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
221
+ attn = attn.softmax(dim=-1)
222
+ attn = self.attn_drop(attn)
223
+
224
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
225
+ x = self.proj(x)
226
+ x = self.proj_drop(x)
227
+ return x
228
+
229
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
230
+ qkv = self.qkv(x)
231
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
232
+
233
+ if self.qk_normalization:
234
+ q, k, v = qkv.unbind(2)
235
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
236
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
237
+ qkv = torch.stack([q, k, v], dim=2)
238
+
239
+ context, _ = self.inner_attn(
240
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
241
+ )
242
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
243
+ outs = self.proj_drop(outs)
244
+ return outs
245
+
246
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
247
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
248
+ return x
249
+
250
+
251
+ class InternMLP(nn.Module):
252
+ def __init__(self, config: InternVisionConfig):
253
+ super().__init__()
254
+ self.config = config
255
+ self.act = ACT2FN[config.hidden_act]
256
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
257
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
258
+
259
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
260
+ hidden_states = self.fc1(hidden_states)
261
+ hidden_states = self.act(hidden_states)
262
+ hidden_states = self.fc2(hidden_states)
263
+ return hidden_states
264
+
265
+
266
+ class InternVisionEncoderLayer(nn.Module):
267
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
268
+ super().__init__()
269
+ self.embed_dim = config.hidden_size
270
+ self.intermediate_size = config.intermediate_size
271
+ self.norm_type = config.norm_type
272
+
273
+ self.attn = InternAttention(config)
274
+ self.mlp = InternMLP(config)
275
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
277
+
278
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
280
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
282
+
283
+ def forward(
284
+ self,
285
+ hidden_states: torch.Tensor,
286
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
287
+ """
288
+ Args:
289
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
290
+ """
291
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
292
+
293
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
294
+
295
+ return hidden_states
296
+
297
+
298
+ class InternVisionEncoder(nn.Module):
299
+ """
300
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
301
+ [`InternEncoderLayer`].
302
+
303
+ Args:
304
+ config (`InternConfig`):
305
+ The corresponding vision configuration for the `InternEncoder`.
306
+ """
307
+
308
+ def __init__(self, config: InternVisionConfig):
309
+ super().__init__()
310
+ self.config = config
311
+ # stochastic depth decay rule
312
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
313
+ self.layers = nn.ModuleList([
314
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
315
+ self.gradient_checkpointing = True
316
+
317
+ def forward(
318
+ self,
319
+ inputs_embeds,
320
+ output_hidden_states: Optional[bool] = None,
321
+ return_dict: Optional[bool] = None,
322
+ ) -> Union[Tuple, BaseModelOutput]:
323
+ r"""
324
+ Args:
325
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
326
+ Embedded representation of the inputs. Should be float, not int tokens.
327
+ output_hidden_states (`bool`, *optional*):
328
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
329
+ for more detail.
330
+ return_dict (`bool`, *optional*):
331
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
332
+ """
333
+ output_hidden_states = (
334
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
335
+ )
336
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
337
+
338
+ encoder_states = () if output_hidden_states else None
339
+ hidden_states = inputs_embeds
340
+
341
+ for idx, encoder_layer in enumerate(self.layers):
342
+ if output_hidden_states:
343
+ encoder_states = encoder_states + (hidden_states,)
344
+ if self.gradient_checkpointing and self.training:
345
+ layer_outputs = torch.utils.checkpoint.checkpoint(
346
+ encoder_layer,
347
+ hidden_states)
348
+ else:
349
+ layer_outputs = encoder_layer(
350
+ hidden_states,
351
+ )
352
+ hidden_states = layer_outputs
353
+
354
+ if output_hidden_states:
355
+ encoder_states = encoder_states + (hidden_states,)
356
+
357
+ if not return_dict:
358
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
359
+ return BaseModelOutput(
360
+ last_hidden_state=hidden_states, hidden_states=encoder_states
361
+ )
362
+
363
+
364
+ class InternVisionModel(PreTrainedModel):
365
+ main_input_name = 'pixel_values'
366
+ _supports_flash_attn_2 = True
367
+ config_class = InternVisionConfig
368
+ _no_split_modules = ['InternVisionEncoderLayer']
369
+
370
+ def __init__(self, config: InternVisionConfig):
371
+ super().__init__(config)
372
+ self.config = config
373
+
374
+ self.embeddings = InternVisionEmbeddings(config)
375
+ self.encoder = InternVisionEncoder(config)
376
+
377
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
378
+ pos_emb = self.embeddings.position_embedding
379
+ _, num_positions, embed_dim = pos_emb.shape
380
+ cls_emb = pos_emb[:, :1, :]
381
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
382
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
383
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
384
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
385
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
386
+ self.embeddings.image_size = new_size
387
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
388
+
389
+ def get_input_embeddings(self):
390
+ return self.embeddings
391
+
392
+ def forward(
393
+ self,
394
+ pixel_values: Optional[torch.FloatTensor] = None,
395
+ output_hidden_states: Optional[bool] = None,
396
+ return_dict: Optional[bool] = None,
397
+ pixel_embeds: Optional[torch.FloatTensor] = None,
398
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
399
+ output_hidden_states = (
400
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
401
+ )
402
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
403
+
404
+ if pixel_values is None and pixel_embeds is None:
405
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
406
+
407
+ if pixel_embeds is not None:
408
+ hidden_states = pixel_embeds
409
+ else:
410
+ if len(pixel_values.shape) == 4:
411
+ hidden_states = self.embeddings(pixel_values)
412
+ else:
413
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
414
+ encoder_outputs = self.encoder(
415
+ inputs_embeds=hidden_states,
416
+ output_hidden_states=output_hidden_states,
417
+ return_dict=return_dict,
418
+ )
419
+ last_hidden_state = encoder_outputs.last_hidden_state
420
+ pooled_output = last_hidden_state[:, 0, :]
421
+
422
+ if not return_dict:
423
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
424
+
425
+ return BaseModelOutputWithPooling(
426
+ last_hidden_state=last_hidden_state,
427
+ pooler_output=pooled_output,
428
+ hidden_states=encoder_outputs.hidden_states,
429
+ attentions=encoder_outputs.attentions,
430
+ )
modeling_internlm2.py ADDED
@@ -0,0 +1,1415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except: # noqa # pylint: disable=bare-except
41
+ BaseStreamer = None
42
+
43
+ from .configuration_internlm2 import InternLM2Config
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = 'InternLM2Config'
48
+
49
+ flash_attn_func, flash_attn_varlen_func = None, None
50
+ pad_input, index_first_axis, unpad_input = None, None, None
51
+ try:
52
+ from flash_attn import flash_attn_func as _flash_attn_func
53
+ from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
54
+ from flash_attn.bert_padding import index_first_axis as _index_first_axis
55
+ from flash_attn.bert_padding import pad_input as _pad_input
56
+ from flash_attn.bert_padding import unpad_input as _unpad_input
57
+
58
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
59
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
60
+ has_flash_attn = True
61
+ except:
62
+ has_flash_attn = False
63
+
64
+
65
+ def _import_flash_attn():
66
+ global flash_attn_func, flash_attn_varlen_func
67
+ global pad_input, index_first_axis, unpad_input
68
+ try:
69
+ from flash_attn import flash_attn_func as _flash_attn_func
70
+ from flash_attn import \
71
+ flash_attn_varlen_func as _flash_attn_varlen_func
72
+ from flash_attn.bert_padding import \
73
+ index_first_axis as _index_first_axis
74
+ from flash_attn.bert_padding import pad_input as _pad_input
75
+ from flash_attn.bert_padding import unpad_input as _unpad_input
76
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
77
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
78
+ except ImportError:
79
+ raise ImportError('flash_attn is not installed.')
80
+
81
+
82
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
83
+ def _get_unpad_data(attention_mask):
84
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
85
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
86
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
87
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
88
+ return (
89
+ indices,
90
+ cu_seqlens,
91
+ max_seqlen_in_batch,
92
+ )
93
+
94
+
95
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
96
+ def _make_causal_mask(
97
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
98
+ ):
99
+ """
100
+ Make causal mask used for bi-directional self-attention.
101
+ """
102
+ bsz, tgt_len = input_ids_shape
103
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
104
+ mask_cond = torch.arange(mask.size(-1), device=device)
105
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
106
+ mask = mask.to(dtype)
107
+
108
+ if past_key_values_length > 0:
109
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
110
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
111
+
112
+
113
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
114
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
115
+ """
116
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
117
+ """
118
+ bsz, src_len = mask.size()
119
+ tgt_len = tgt_len if tgt_len is not None else src_len
120
+
121
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
122
+
123
+ inverted_mask = 1.0 - expanded_mask
124
+
125
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
126
+
127
+
128
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
129
+ class InternLM2RMSNorm(nn.Module):
130
+ def __init__(self, hidden_size, eps=1e-6):
131
+ """
132
+ InternLM2RMSNorm is equivalent to T5LayerNorm
133
+ """
134
+ super().__init__()
135
+ self.weight = nn.Parameter(torch.ones(hidden_size))
136
+ self.variance_epsilon = eps
137
+
138
+ def forward(self, hidden_states):
139
+ input_dtype = hidden_states.dtype
140
+ hidden_states = hidden_states.to(torch.float32)
141
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
142
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
143
+ return self.weight * hidden_states.to(input_dtype)
144
+
145
+
146
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
147
+ class InternLM2RotaryEmbedding(nn.Module):
148
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
149
+ super().__init__()
150
+
151
+ self.dim = dim
152
+ self.max_position_embeddings = max_position_embeddings
153
+ self.base = base
154
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
155
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
156
+
157
+ # Build here to make `torch.jit.trace` work.
158
+ self._set_cos_sin_cache(
159
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
160
+ )
161
+
162
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
163
+ self.max_seq_len_cached = seq_len
164
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
165
+
166
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
167
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
168
+ emb = torch.cat((freqs, freqs), dim=-1)
169
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
170
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
171
+
172
+ def forward(self, x, seq_len=None):
173
+ # x: [bs, num_attention_heads, seq_len, head_size]
174
+ if seq_len > self.max_seq_len_cached:
175
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
176
+
177
+ return (
178
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
179
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
180
+ )
181
+
182
+
183
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
184
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
185
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
186
+
187
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
188
+ self.scaling_factor = scaling_factor
189
+ super().__init__(dim, max_position_embeddings, base, device)
190
+
191
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
192
+ self.max_seq_len_cached = seq_len
193
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
194
+ t = t / self.scaling_factor
195
+
196
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
197
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
198
+ emb = torch.cat((freqs, freqs), dim=-1)
199
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
200
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
201
+
202
+
203
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
204
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
205
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
206
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
207
+ """
208
+
209
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
210
+ self.scaling_factor = scaling_factor
211
+ super().__init__(dim, max_position_embeddings, base, device)
212
+
213
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
214
+ self.max_seq_len_cached = seq_len
215
+
216
+ if seq_len > self.max_position_embeddings:
217
+ base = self.base * (
218
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
219
+ ) ** (self.dim / (self.dim - 2))
220
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
221
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
222
+
223
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
224
+
225
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
226
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
227
+ emb = torch.cat((freqs, freqs), dim=-1)
228
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
229
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
230
+
231
+
232
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
233
+ def rotate_half(x):
234
+ """Rotates half the hidden dims of the input."""
235
+ x1 = x[..., : x.shape[-1] // 2]
236
+ x2 = x[..., x.shape[-1] // 2 :]
237
+ return torch.cat((-x2, x1), dim=-1)
238
+
239
+
240
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
241
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
242
+ """Applies Rotary Position Embedding to the query and key tensors."""
243
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
244
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
245
+ q_embed = (q * cos) + (rotate_half(q) * sin)
246
+ k_embed = (k * cos) + (rotate_half(k) * sin)
247
+ return q_embed, k_embed
248
+
249
+
250
+ class InternLM2MLP(nn.Module):
251
+ def __init__(self, config):
252
+ super().__init__()
253
+ self.config = config
254
+ self.hidden_size = config.hidden_size
255
+ self.intermediate_size = config.intermediate_size
256
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
257
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
258
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
259
+ self.act_fn = ACT2FN[config.hidden_act]
260
+
261
+ def forward(self, x):
262
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
263
+
264
+ return down_proj
265
+
266
+
267
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
268
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
269
+ """
270
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
271
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
272
+ """
273
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
274
+ if n_rep == 1:
275
+ return hidden_states
276
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
277
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
278
+
279
+
280
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
281
+ class InternLM2Attention(nn.Module):
282
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
283
+
284
+ def __init__(self, config: InternLM2Config):
285
+ super().__init__()
286
+ self.config = config
287
+ self.hidden_size = config.hidden_size
288
+ self.num_heads = config.num_attention_heads
289
+ self.head_dim = self.hidden_size // self.num_heads
290
+ self.num_key_value_heads = config.num_key_value_heads
291
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
292
+ self.max_position_embeddings = config.max_position_embeddings
293
+ self.is_causal = True
294
+
295
+ if (self.head_dim * self.num_heads) != self.hidden_size:
296
+ raise ValueError(
297
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
298
+ f' and `num_heads`: {self.num_heads}).'
299
+ )
300
+
301
+ self.wqkv = nn.Linear(
302
+ self.hidden_size,
303
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
304
+ bias=config.bias,
305
+ )
306
+
307
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
308
+ self._init_rope()
309
+
310
+ def _init_rope(self):
311
+ if self.config.rope_scaling is None:
312
+ self.rotary_emb = InternLM2RotaryEmbedding(
313
+ self.head_dim,
314
+ max_position_embeddings=self.max_position_embeddings,
315
+ base=self.config.rope_theta,
316
+ )
317
+ else:
318
+ scaling_type = self.config.rope_scaling['type']
319
+ scaling_factor = self.config.rope_scaling['factor']
320
+ if scaling_type == 'dynamic':
321
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
322
+ self.head_dim,
323
+ max_position_embeddings=self.max_position_embeddings,
324
+ base=self.config.rope_theta,
325
+ scaling_factor=scaling_factor,
326
+ )
327
+ elif scaling_type == 'linear':
328
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
329
+ self.head_dim,
330
+ max_position_embeddings=self.max_position_embeddings,
331
+ base=self.config.rope_theta,
332
+ scaling_factor=scaling_factor,
333
+ )
334
+ else:
335
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
336
+ return self.rotary_emb
337
+
338
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
339
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
340
+
341
+ def forward(
342
+ self,
343
+ hidden_states: torch.Tensor,
344
+ attention_mask: Optional[torch.Tensor] = None,
345
+ position_ids: Optional[torch.LongTensor] = None,
346
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
347
+ output_attentions: bool = False,
348
+ use_cache: bool = False,
349
+ **kwargs,
350
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
351
+ if 'padding_mask' in kwargs:
352
+ warnings.warn(
353
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
354
+ 'Please make sure use `attention_mask` instead.`'
355
+ )
356
+
357
+ bsz, q_len, _ = hidden_states.size()
358
+
359
+ qkv_states = self.wqkv(hidden_states)
360
+
361
+ qkv_states = rearrange(
362
+ qkv_states,
363
+ 'b q (h gs d) -> b q h gs d',
364
+ gs=2 + self.num_key_value_groups,
365
+ d=self.head_dim,
366
+ )
367
+
368
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
369
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
370
+ key_states = qkv_states[..., -2, :]
371
+ value_states = qkv_states[..., -1, :]
372
+
373
+ query_states = query_states.transpose(1, 2)
374
+ key_states = key_states.transpose(1, 2)
375
+ value_states = value_states.transpose(1, 2)
376
+
377
+ kv_seq_len = key_states.shape[-2]
378
+ if past_key_value is not None:
379
+ kv_seq_len += past_key_value[0].shape[-2]
380
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
381
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
382
+
383
+ if past_key_value is not None:
384
+ # reuse k, v, self_attention
385
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
386
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
387
+
388
+ past_key_value = (key_states, value_states) if use_cache else None
389
+
390
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
391
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
392
+
393
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
394
+
395
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
396
+ raise ValueError(
397
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
398
+ f' {attn_weights.size()}'
399
+ )
400
+
401
+ if attention_mask is not None:
402
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
403
+ raise ValueError(
404
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
405
+ )
406
+ attn_weights = attn_weights + attention_mask
407
+
408
+ # upcast attention to fp32
409
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
410
+ attn_output = torch.matmul(attn_weights, value_states)
411
+
412
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
413
+ raise ValueError(
414
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
415
+ f' {attn_output.size()}'
416
+ )
417
+
418
+ attn_output = attn_output.transpose(1, 2).contiguous()
419
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
420
+
421
+ attn_output = self.wo(attn_output)
422
+
423
+ if not output_attentions:
424
+ attn_weights = None
425
+
426
+ return attn_output, attn_weights, past_key_value
427
+
428
+
429
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
430
+ class InternLM2FlashAttention2(InternLM2Attention):
431
+ """
432
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
433
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
434
+ flash attention and deal with padding tokens in case the input contains any of them.
435
+ """
436
+
437
+ def forward(
438
+ self,
439
+ hidden_states: torch.Tensor,
440
+ attention_mask: Optional[torch.LongTensor] = None,
441
+ position_ids: Optional[torch.LongTensor] = None,
442
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
443
+ output_attentions: bool = False,
444
+ use_cache: bool = False,
445
+ **kwargs,
446
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
447
+ # InternLM2FlashAttention2 attention does not support output_attentions
448
+ if 'padding_mask' in kwargs:
449
+ warnings.warn(
450
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
451
+ 'Please make sure use `attention_mask` instead.`'
452
+ )
453
+
454
+ # overwrite attention_mask with padding_mask
455
+ attention_mask = kwargs.pop('padding_mask')
456
+
457
+ output_attentions = False
458
+
459
+ bsz, q_len, _ = hidden_states.size()
460
+
461
+ qkv_states = self.wqkv(hidden_states)
462
+
463
+ qkv_states = rearrange(
464
+ qkv_states,
465
+ 'b q (h gs d) -> b q h gs d',
466
+ gs=2 + self.num_key_value_groups,
467
+ d=self.head_dim,
468
+ )
469
+
470
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
471
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
472
+ key_states = qkv_states[..., -2, :]
473
+ value_states = qkv_states[..., -1, :]
474
+
475
+ query_states = query_states.transpose(1, 2)
476
+ key_states = key_states.transpose(1, 2)
477
+ value_states = value_states.transpose(1, 2)
478
+
479
+ kv_seq_len = key_states.shape[-2]
480
+ if past_key_value is not None:
481
+ kv_seq_len += past_key_value[0].shape[-2]
482
+
483
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
484
+
485
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
486
+
487
+ if past_key_value is not None:
488
+ # reuse k, v, self_attention
489
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
490
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
491
+
492
+ past_key_value = (key_states, value_states) if use_cache else None
493
+
494
+ query_states = query_states.transpose(1, 2)
495
+ key_states = key_states.transpose(1, 2)
496
+ value_states = value_states.transpose(1, 2)
497
+
498
+ attn_output = self._flash_attention_forward(
499
+ query_states, key_states, value_states, attention_mask, q_len
500
+ )
501
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
502
+ attn_output = self.wo(attn_output)
503
+
504
+ if not output_attentions:
505
+ attn_weights = None
506
+
507
+ return attn_output, attn_weights, past_key_value
508
+
509
+ def _flash_attention_forward(
510
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
511
+ ):
512
+ """
513
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
514
+ first unpad the input, then computes the attention scores and pad the final attention scores.
515
+
516
+ Args:
517
+ query_states (`torch.Tensor`):
518
+ Input query states to be passed to Flash Attention API
519
+ key_states (`torch.Tensor`):
520
+ Input key states to be passed to Flash Attention API
521
+ value_states (`torch.Tensor`):
522
+ Input value states to be passed to Flash Attention API
523
+ attention_mask (`torch.Tensor`):
524
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
525
+ position of padding tokens and 1 for the position of non-padding tokens.
526
+ dropout (`int`, *optional*):
527
+ Attention dropout
528
+ softmax_scale (`float`, *optional*):
529
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
530
+ """
531
+ # Contains at least one padding token in the sequence
532
+ causal = self.is_causal and query_length != 1
533
+ if attention_mask is not None:
534
+ batch_size = query_states.shape[0]
535
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
536
+ query_states, key_states, value_states, attention_mask, query_length
537
+ )
538
+
539
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
540
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
541
+
542
+ attn_output_unpad = flash_attn_varlen_func(
543
+ query_states,
544
+ key_states,
545
+ value_states,
546
+ cu_seqlens_q=cu_seqlens_q,
547
+ cu_seqlens_k=cu_seqlens_k,
548
+ max_seqlen_q=max_seqlen_in_batch_q,
549
+ max_seqlen_k=max_seqlen_in_batch_k,
550
+ dropout_p=dropout,
551
+ softmax_scale=softmax_scale,
552
+ causal=causal,
553
+ )
554
+
555
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
556
+ else:
557
+ attn_output = flash_attn_func(
558
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
559
+ )
560
+
561
+ return attn_output
562
+
563
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
564
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
565
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
566
+
567
+ key_layer = index_first_axis(
568
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
569
+ )
570
+ value_layer = index_first_axis(
571
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
572
+ )
573
+
574
+ if query_length == kv_seq_len:
575
+ query_layer = index_first_axis(
576
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
577
+ )
578
+ cu_seqlens_q = cu_seqlens_k
579
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
580
+ indices_q = indices_k
581
+ elif query_length == 1:
582
+ max_seqlen_in_batch_q = 1
583
+ cu_seqlens_q = torch.arange(
584
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
585
+ ) # There is a memcpy here, that is very bad.
586
+ indices_q = cu_seqlens_q[:-1]
587
+ query_layer = query_layer.squeeze(1)
588
+ else:
589
+ # The -q_len: slice assumes left padding.
590
+ attention_mask = attention_mask[:, -query_length:]
591
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
592
+
593
+ return (
594
+ query_layer,
595
+ key_layer,
596
+ value_layer,
597
+ indices_q.to(torch.int64),
598
+ (cu_seqlens_q, cu_seqlens_k),
599
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
600
+ )
601
+
602
+
603
+ INTERNLM2_ATTENTION_CLASSES = {
604
+ 'eager': InternLM2Attention,
605
+ 'flash_attention_2': InternLM2FlashAttention2,
606
+ }
607
+
608
+
609
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
610
+ class InternLM2DecoderLayer(nn.Module):
611
+ def __init__(self, config: InternLM2Config):
612
+ super().__init__()
613
+ self.hidden_size = config.hidden_size
614
+
615
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
616
+
617
+ self.feed_forward = InternLM2MLP(config)
618
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
619
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
620
+
621
+ def forward(
622
+ self,
623
+ hidden_states: torch.Tensor,
624
+ attention_mask: Optional[torch.Tensor] = None,
625
+ position_ids: Optional[torch.LongTensor] = None,
626
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
627
+ output_attentions: Optional[bool] = False,
628
+ use_cache: Optional[bool] = False,
629
+ **kwargs,
630
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
631
+ """
632
+ Args:
633
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
634
+ attention_mask (`torch.FloatTensor`, *optional*):
635
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
636
+ query_sequence_length, key_sequence_length)` if default attention is used.
637
+ output_attentions (`bool`, *optional*):
638
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
639
+ returned tensors for more detail.
640
+ use_cache (`bool`, *optional*):
641
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
642
+ (see `past_key_values`).
643
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
644
+ """
645
+ if 'padding_mask' in kwargs:
646
+ warnings.warn(
647
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
648
+ 'Please make sure use `attention_mask` instead.`'
649
+ )
650
+
651
+ residual = hidden_states
652
+
653
+ hidden_states = self.attention_norm(hidden_states)
654
+
655
+ # Self Attention
656
+ hidden_states, self_attn_weights, present_key_value = self.attention(
657
+ hidden_states=hidden_states,
658
+ attention_mask=attention_mask,
659
+ position_ids=position_ids,
660
+ past_key_value=past_key_value,
661
+ output_attentions=output_attentions,
662
+ use_cache=use_cache,
663
+ **kwargs,
664
+ )
665
+ hidden_states = residual + hidden_states
666
+
667
+ # Fully Connected
668
+ residual = hidden_states
669
+ hidden_states = self.ffn_norm(hidden_states)
670
+ hidden_states = self.feed_forward(hidden_states)
671
+ hidden_states = residual + hidden_states
672
+
673
+ outputs = (hidden_states,)
674
+
675
+ if output_attentions:
676
+ outputs += (self_attn_weights,)
677
+
678
+ if use_cache:
679
+ outputs += (present_key_value,)
680
+
681
+ return outputs
682
+
683
+
684
+ InternLM2_START_DOCSTRING = r"""
685
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
686
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
687
+ etc.)
688
+
689
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
690
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
691
+ and behavior.
692
+
693
+ Parameters:
694
+ config ([`InternLM2Config`]):
695
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
696
+ load the weights associated with the model, only the configuration. Check out the
697
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
698
+ """
699
+
700
+
701
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
702
+ @add_start_docstrings(
703
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
704
+ InternLM2_START_DOCSTRING,
705
+ )
706
+ class InternLM2PreTrainedModel(PreTrainedModel):
707
+ config_class = InternLM2Config
708
+ base_model_prefix = 'model'
709
+ supports_gradient_checkpointing = True
710
+ _no_split_modules = ['InternLM2DecoderLayer']
711
+ _skip_keys_device_placement = 'past_key_values'
712
+ _supports_flash_attn_2 = True
713
+
714
+ def _init_weights(self, module):
715
+ std = self.config.initializer_range
716
+ if isinstance(module, nn.Linear):
717
+ module.weight.data.normal_(mean=0.0, std=std)
718
+ if module.bias is not None:
719
+ module.bias.data.zero_()
720
+ elif isinstance(module, nn.Embedding):
721
+ module.weight.data.normal_(mean=0.0, std=std)
722
+ if module.padding_idx is not None:
723
+ module.weight.data[module.padding_idx].zero_()
724
+
725
+
726
+ InternLM2_INPUTS_DOCSTRING = r"""
727
+ Args:
728
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
729
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
730
+ it.
731
+
732
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
733
+ [`PreTrainedTokenizer.__call__`] for details.
734
+
735
+ [What are input IDs?](../glossary#input-ids)
736
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
737
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
738
+
739
+ - 1 for tokens that are **not masked**,
740
+ - 0 for tokens that are **masked**.
741
+
742
+ [What are attention masks?](../glossary#attention-mask)
743
+
744
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
745
+ [`PreTrainedTokenizer.__call__`] for details.
746
+
747
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
748
+ `past_key_values`).
749
+
750
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
751
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
752
+ information on the default strategy.
753
+
754
+ - 1 indicates the head is **not masked**,
755
+ - 0 indicates the head is **masked**.
756
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
757
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
758
+ config.n_positions - 1]`.
759
+
760
+ [What are position IDs?](../glossary#position-ids)
761
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
762
+ when `config.use_cache=True`):
763
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
764
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
765
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
766
+
767
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
768
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
769
+
770
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
771
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
772
+ of shape `(batch_size, sequence_length)`.
773
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
774
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
775
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
776
+ model's internal embedding lookup matrix.
777
+ use_cache (`bool`, *optional*):
778
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
779
+ `past_key_values`).
780
+ output_attentions (`bool`, *optional*):
781
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
782
+ tensors for more detail.
783
+ output_hidden_states (`bool`, *optional*):
784
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
785
+ more detail.
786
+ return_dict (`bool`, *optional*):
787
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
788
+ """
789
+
790
+
791
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
792
+ @add_start_docstrings(
793
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
794
+ InternLM2_START_DOCSTRING,
795
+ )
796
+ class InternLM2Model(InternLM2PreTrainedModel):
797
+ """
798
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
799
+
800
+ Args:
801
+ config: InternLM2Config
802
+ """
803
+
804
+ _auto_class = 'AutoModel'
805
+
806
+ def __init__(self, config: InternLM2Config):
807
+ super().__init__(config)
808
+ self.padding_idx = config.pad_token_id
809
+ self.vocab_size = config.vocab_size
810
+ self.config = config
811
+ if not has_flash_attn:
812
+ self.config.attn_implementation = 'eager'
813
+ print('Warning: Flash attention is not available, using eager attention instead.')
814
+
815
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
816
+
817
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
818
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
819
+
820
+ self.gradient_checkpointing = False
821
+ # Initialize weights and apply final processing
822
+ self.post_init()
823
+
824
+ def get_input_embeddings(self):
825
+ return self.tok_embeddings
826
+
827
+ def set_input_embeddings(self, value):
828
+ self.tok_embeddings = value
829
+
830
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
831
+ # create causal mask
832
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
833
+ combined_attention_mask = None
834
+ if input_shape[-1] > 1:
835
+ combined_attention_mask = _make_causal_mask(
836
+ input_shape,
837
+ inputs_embeds.dtype,
838
+ device=inputs_embeds.device,
839
+ past_key_values_length=past_key_values_length,
840
+ )
841
+
842
+ if attention_mask is not None:
843
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
844
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
845
+ inputs_embeds.device
846
+ )
847
+ combined_attention_mask = (
848
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
849
+ )
850
+
851
+ return combined_attention_mask
852
+
853
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
854
+ def forward(
855
+ self,
856
+ input_ids: torch.LongTensor = None,
857
+ attention_mask: Optional[torch.Tensor] = None,
858
+ position_ids: Optional[torch.LongTensor] = None,
859
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
860
+ inputs_embeds: Optional[torch.FloatTensor] = None,
861
+ use_cache: Optional[bool] = None,
862
+ output_attentions: Optional[bool] = None,
863
+ output_hidden_states: Optional[bool] = None,
864
+ return_dict: Optional[bool] = None,
865
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
866
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
867
+ output_hidden_states = (
868
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
869
+ )
870
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
871
+
872
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
873
+
874
+ if self.config.attn_implementation == 'flash_attention_2':
875
+ _import_flash_attn()
876
+
877
+ # retrieve input_ids and inputs_embeds
878
+ if input_ids is not None and inputs_embeds is not None:
879
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
880
+ elif input_ids is not None:
881
+ batch_size, seq_length = input_ids.shape[:2]
882
+ elif inputs_embeds is not None:
883
+ batch_size, seq_length = inputs_embeds.shape[:2]
884
+ else:
885
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
886
+
887
+ seq_length_with_past = seq_length
888
+ past_key_values_length = 0
889
+ if past_key_values is not None:
890
+ past_key_values_length = past_key_values[0][0].shape[2]
891
+ seq_length_with_past = seq_length_with_past + past_key_values_length
892
+
893
+ if position_ids is None:
894
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
895
+ position_ids = torch.arange(
896
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
897
+ )
898
+ position_ids = position_ids.unsqueeze(0)
899
+
900
+ if inputs_embeds is None:
901
+ inputs_embeds = self.tok_embeddings(input_ids)
902
+
903
+ if self.config.attn_implementation == 'flash_attention_2':
904
+ # 2d mask is passed through the layers
905
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
906
+ else:
907
+ if attention_mask is None:
908
+ attention_mask = torch.ones(
909
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
910
+ )
911
+ attention_mask = self._prepare_decoder_attention_mask(
912
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
913
+ )
914
+
915
+ # embed positions
916
+ hidden_states = inputs_embeds
917
+
918
+ if self.gradient_checkpointing and self.training:
919
+ if use_cache:
920
+ logger.warning_once(
921
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
922
+ )
923
+ use_cache = False
924
+
925
+ # decoder layers
926
+ all_hidden_states = () if output_hidden_states else None
927
+ all_self_attns = () if output_attentions else None
928
+ next_decoder_cache = () if use_cache else None
929
+
930
+ for idx, decoder_layer in enumerate(self.layers):
931
+ if output_hidden_states:
932
+ all_hidden_states += (hidden_states,)
933
+
934
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
935
+
936
+ if self.gradient_checkpointing and self.training:
937
+
938
+ def create_custom_forward(module):
939
+ def custom_forward(*inputs):
940
+ # None for past_key_value
941
+ return module(*inputs, output_attentions, None)
942
+
943
+ return custom_forward
944
+
945
+ layer_outputs = torch.utils.checkpoint.checkpoint(
946
+ create_custom_forward(decoder_layer),
947
+ hidden_states,
948
+ attention_mask,
949
+ position_ids,
950
+ None,
951
+ )
952
+ else:
953
+ layer_outputs = decoder_layer(
954
+ hidden_states,
955
+ attention_mask=attention_mask,
956
+ position_ids=position_ids,
957
+ past_key_value=past_key_value,
958
+ output_attentions=output_attentions,
959
+ use_cache=use_cache,
960
+ )
961
+
962
+ hidden_states = layer_outputs[0]
963
+
964
+ if use_cache:
965
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
966
+
967
+ if output_attentions:
968
+ all_self_attns += (layer_outputs[1],)
969
+
970
+ hidden_states = self.norm(hidden_states)
971
+
972
+ # add hidden states from the last decoder layer
973
+ if output_hidden_states:
974
+ all_hidden_states += (hidden_states,)
975
+
976
+ next_cache = next_decoder_cache if use_cache else None
977
+ if not return_dict:
978
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
979
+ return BaseModelOutputWithPast(
980
+ last_hidden_state=hidden_states,
981
+ past_key_values=next_cache,
982
+ hidden_states=all_hidden_states,
983
+ attentions=all_self_attns,
984
+ )
985
+
986
+
987
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
988
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
989
+ _auto_class = 'AutoModelForCausalLM'
990
+
991
+ _tied_weights_keys = ['output.weight']
992
+
993
+ def __init__(self, config):
994
+ super().__init__(config)
995
+ self.model = InternLM2Model(config)
996
+ self.vocab_size = config.vocab_size
997
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
998
+
999
+ # Initialize weights and apply final processing
1000
+ self.post_init()
1001
+
1002
+ def get_input_embeddings(self):
1003
+ return self.model.tok_embeddings
1004
+
1005
+ def set_input_embeddings(self, value):
1006
+ self.model.tok_embeddings = value
1007
+
1008
+ def get_output_embeddings(self):
1009
+ return self.output
1010
+
1011
+ def set_output_embeddings(self, new_embeddings):
1012
+ self.output = new_embeddings
1013
+
1014
+ def set_decoder(self, decoder):
1015
+ self.model = decoder
1016
+
1017
+ def get_decoder(self):
1018
+ return self.model
1019
+
1020
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1021
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1022
+ def forward(
1023
+ self,
1024
+ input_ids: torch.LongTensor = None,
1025
+ attention_mask: Optional[torch.Tensor] = None,
1026
+ position_ids: Optional[torch.LongTensor] = None,
1027
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1028
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1029
+ labels: Optional[torch.LongTensor] = None,
1030
+ use_cache: Optional[bool] = None,
1031
+ output_attentions: Optional[bool] = None,
1032
+ output_hidden_states: Optional[bool] = None,
1033
+ return_dict: Optional[bool] = None,
1034
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1035
+ r"""
1036
+ Args:
1037
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1038
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1039
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1040
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1041
+
1042
+ Returns:
1043
+
1044
+ Example:
1045
+
1046
+ ```python
1047
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1048
+
1049
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1050
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1051
+
1052
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1053
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1054
+
1055
+ >>> # Generate
1056
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1057
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1058
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1059
+ ```"""
1060
+
1061
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1062
+ output_hidden_states = (
1063
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1064
+ )
1065
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1066
+
1067
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1068
+ outputs = self.model(
1069
+ input_ids=input_ids,
1070
+ attention_mask=attention_mask,
1071
+ position_ids=position_ids,
1072
+ past_key_values=past_key_values,
1073
+ inputs_embeds=inputs_embeds,
1074
+ use_cache=use_cache,
1075
+ output_attentions=output_attentions,
1076
+ output_hidden_states=output_hidden_states,
1077
+ return_dict=return_dict,
1078
+ )
1079
+
1080
+ hidden_states = outputs[0]
1081
+ logits = self.output(hidden_states)
1082
+ logits = logits.float()
1083
+
1084
+ loss = None
1085
+ if labels is not None:
1086
+ # Shift so that tokens < n predict n
1087
+ shift_logits = logits[..., :-1, :].contiguous()
1088
+ shift_labels = labels[..., 1:].contiguous()
1089
+ # Flatten the tokens
1090
+ loss_fct = CrossEntropyLoss()
1091
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1092
+ shift_labels = shift_labels.view(-1)
1093
+ # Enable model parallelism
1094
+ shift_labels = shift_labels.to(shift_logits.device)
1095
+ loss = loss_fct(shift_logits, shift_labels)
1096
+
1097
+ if not return_dict:
1098
+ output = (logits,) + outputs[1:]
1099
+ return (loss,) + output if loss is not None else output
1100
+
1101
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1102
+ output = CausalLMOutputWithPast(
1103
+ loss=loss,
1104
+ logits=logits,
1105
+ past_key_values=outputs.past_key_values,
1106
+ hidden_states=outputs.hidden_states,
1107
+ attentions=outputs.attentions,
1108
+ )
1109
+ output['logits'] = output['logits'].to(device)
1110
+ return output
1111
+
1112
+ def prepare_inputs_for_generation(
1113
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1114
+ ):
1115
+ if past_key_values is not None:
1116
+ past_length = past_key_values[0][0].shape[2]
1117
+
1118
+ # Some generation methods already pass only the last input ID
1119
+ if input_ids.shape[1] > past_length:
1120
+ remove_prefix_length = past_length
1121
+ else:
1122
+ # Default to old behavior: keep only final ID
1123
+ remove_prefix_length = input_ids.shape[1] - 1
1124
+
1125
+ input_ids = input_ids[:, remove_prefix_length:]
1126
+
1127
+ position_ids = kwargs.get('position_ids', None)
1128
+ if attention_mask is not None and position_ids is None:
1129
+ # create position_ids on the fly for batch generation
1130
+ position_ids = attention_mask.long().cumsum(-1) - 1
1131
+ position_ids.masked_fill_(attention_mask == 0, 1)
1132
+ if past_key_values:
1133
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1134
+
1135
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1136
+ if inputs_embeds is not None and past_key_values is None:
1137
+ model_inputs = {'inputs_embeds': inputs_embeds}
1138
+ else:
1139
+ model_inputs = {'input_ids': input_ids}
1140
+
1141
+ model_inputs.update(
1142
+ {
1143
+ 'position_ids': position_ids,
1144
+ 'past_key_values': past_key_values,
1145
+ 'use_cache': kwargs.get('use_cache'),
1146
+ 'attention_mask': attention_mask,
1147
+ }
1148
+ )
1149
+ return model_inputs
1150
+
1151
+ @staticmethod
1152
+ def _reorder_cache(past_key_values, beam_idx):
1153
+ reordered_past = ()
1154
+ for layer_past in past_key_values:
1155
+ reordered_past += (
1156
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1157
+ )
1158
+ return reordered_past
1159
+
1160
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
1161
+ if tokenizer.add_bos_token:
1162
+ prompt = ''
1163
+ else:
1164
+ prompt = tokenizer.bos_token
1165
+ if meta_instruction:
1166
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1167
+ for record in history:
1168
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1169
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1170
+ return tokenizer([prompt], return_tensors='pt')
1171
+
1172
+ @torch.no_grad()
1173
+ def chat(
1174
+ self,
1175
+ tokenizer,
1176
+ query: str,
1177
+ history: List[Tuple[str, str]] = [],
1178
+ streamer: Optional[BaseStreamer] = None,
1179
+ max_new_tokens: int = 1024,
1180
+ do_sample: bool = True,
1181
+ temperature: float = 0.8,
1182
+ top_p: float = 0.8,
1183
+ meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1184
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1185
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
1186
+ **kwargs,
1187
+ ):
1188
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1189
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1190
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1191
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
1192
+ outputs = self.generate(
1193
+ **inputs,
1194
+ streamer=streamer,
1195
+ max_new_tokens=max_new_tokens,
1196
+ do_sample=do_sample,
1197
+ temperature=temperature,
1198
+ top_p=top_p,
1199
+ eos_token_id=eos_token_id,
1200
+ **kwargs,
1201
+ )
1202
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
1203
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1204
+ response = response.split('<|im_end|>')[0]
1205
+ history = history + [(query, response)]
1206
+ return response, history
1207
+
1208
+ @torch.no_grad()
1209
+ def stream_chat(
1210
+ self,
1211
+ tokenizer,
1212
+ query: str,
1213
+ history: List[Tuple[str, str]] = [],
1214
+ max_new_tokens: int = 1024,
1215
+ do_sample: bool = True,
1216
+ temperature: float = 0.8,
1217
+ top_p: float = 0.8,
1218
+ **kwargs,
1219
+ ):
1220
+ """
1221
+ Return a generator in format: (response, history)
1222
+ Eg.
1223
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1224
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1225
+ """
1226
+ if BaseStreamer is None:
1227
+ raise ModuleNotFoundError(
1228
+ 'The version of `transformers` is too low. Please make sure '
1229
+ 'that you have installed `transformers>=4.28.0`.'
1230
+ )
1231
+
1232
+ response_queue = queue.Queue(maxsize=20)
1233
+
1234
+ class ChatStreamer(BaseStreamer):
1235
+ def __init__(self, tokenizer) -> None:
1236
+ super().__init__()
1237
+ self.tokenizer = tokenizer
1238
+ self.queue = response_queue
1239
+ self.query = query
1240
+ self.history = history
1241
+ self.response = ''
1242
+ self.cache = []
1243
+ self.received_inputs = False
1244
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1245
+
1246
+ def put(self, value):
1247
+ if len(value.shape) > 1 and value.shape[0] > 1:
1248
+ raise ValueError('ChatStreamer only supports batch size 1')
1249
+ elif len(value.shape) > 1:
1250
+ value = value[0]
1251
+
1252
+ if not self.received_inputs:
1253
+ # The first received value is input_ids, ignore here
1254
+ self.received_inputs = True
1255
+ return
1256
+
1257
+ self.cache.extend(value.tolist())
1258
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1259
+ if token.strip() != '<|im_end|>':
1260
+ self.response = self.response + token
1261
+ history = self.history + [(self.query, self.response)]
1262
+ self.queue.put((self.response, history))
1263
+ self.cache = []
1264
+ else:
1265
+ self.end()
1266
+
1267
+ def end(self):
1268
+ self.queue.put(None)
1269
+
1270
+ def stream_producer():
1271
+ return self.chat(
1272
+ tokenizer=tokenizer,
1273
+ query=query,
1274
+ streamer=ChatStreamer(tokenizer=tokenizer),
1275
+ history=history,
1276
+ max_new_tokens=max_new_tokens,
1277
+ do_sample=do_sample,
1278
+ temperature=temperature,
1279
+ top_p=top_p,
1280
+ **kwargs,
1281
+ )
1282
+
1283
+ def consumer():
1284
+ producer = threading.Thread(target=stream_producer)
1285
+ producer.start()
1286
+ while True:
1287
+ res = response_queue.get()
1288
+ if res is None:
1289
+ return
1290
+ yield res
1291
+
1292
+ return consumer()
1293
+
1294
+
1295
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1296
+ @add_start_docstrings(
1297
+ """
1298
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1299
+
1300
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1301
+ as other causal models (e.g. GPT-2) do.
1302
+
1303
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1304
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1305
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1306
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1307
+ each row of the batch).
1308
+ """,
1309
+ InternLM2_START_DOCSTRING,
1310
+ )
1311
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1312
+ def __init__(self, config):
1313
+ super().__init__(config)
1314
+ self.num_labels = config.num_labels
1315
+ self.model = InternLM2Model(config)
1316
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1317
+
1318
+ # Initialize weights and apply final processing
1319
+ self.post_init()
1320
+
1321
+ def get_input_embeddings(self):
1322
+ return self.model.tok_embeddings
1323
+
1324
+ def set_input_embeddings(self, value):
1325
+ self.model.tok_embeddings = value
1326
+
1327
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1328
+ def forward(
1329
+ self,
1330
+ input_ids: torch.LongTensor = None,
1331
+ attention_mask: Optional[torch.Tensor] = None,
1332
+ position_ids: Optional[torch.LongTensor] = None,
1333
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1334
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1335
+ labels: Optional[torch.LongTensor] = None,
1336
+ use_cache: Optional[bool] = None,
1337
+ output_attentions: Optional[bool] = None,
1338
+ output_hidden_states: Optional[bool] = None,
1339
+ return_dict: Optional[bool] = None,
1340
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1341
+ r"""
1342
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1343
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1344
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1345
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1346
+ """
1347
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1348
+
1349
+ transformer_outputs = self.model(
1350
+ input_ids,
1351
+ attention_mask=attention_mask,
1352
+ position_ids=position_ids,
1353
+ past_key_values=past_key_values,
1354
+ inputs_embeds=inputs_embeds,
1355
+ use_cache=use_cache,
1356
+ output_attentions=output_attentions,
1357
+ output_hidden_states=output_hidden_states,
1358
+ return_dict=return_dict,
1359
+ )
1360
+ hidden_states = transformer_outputs[0]
1361
+ logits = self.score(hidden_states)
1362
+
1363
+ if input_ids is not None:
1364
+ batch_size = input_ids.shape[0]
1365
+ else:
1366
+ batch_size = inputs_embeds.shape[0]
1367
+
1368
+ if self.config.pad_token_id is None and batch_size != 1:
1369
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1370
+ if self.config.pad_token_id is None:
1371
+ sequence_lengths = -1
1372
+ else:
1373
+ if input_ids is not None:
1374
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1375
+ logits.device
1376
+ )
1377
+ else:
1378
+ sequence_lengths = -1
1379
+
1380
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1381
+
1382
+ loss = None
1383
+ if labels is not None:
1384
+ labels = labels.to(logits.device)
1385
+ if self.config.problem_type is None:
1386
+ if self.num_labels == 1:
1387
+ self.config.problem_type = 'regression'
1388
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1389
+ self.config.problem_type = 'single_label_classification'
1390
+ else:
1391
+ self.config.problem_type = 'multi_label_classification'
1392
+
1393
+ if self.config.problem_type == 'regression':
1394
+ loss_fct = MSELoss()
1395
+ if self.num_labels == 1:
1396
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1397
+ else:
1398
+ loss = loss_fct(pooled_logits, labels)
1399
+ elif self.config.problem_type == 'single_label_classification':
1400
+ loss_fct = CrossEntropyLoss()
1401
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1402
+ elif self.config.problem_type == 'multi_label_classification':
1403
+ loss_fct = BCEWithLogitsLoss()
1404
+ loss = loss_fct(pooled_logits, labels)
1405
+ if not return_dict:
1406
+ output = (pooled_logits,) + transformer_outputs[1:]
1407
+ return ((loss,) + output) if loss is not None else output
1408
+
1409
+ return SequenceClassifierOutputWithPast(
1410
+ loss=loss,
1411
+ logits=pooled_logits,
1412
+ past_key_values=transformer_outputs.past_key_values,
1413
+ hidden_states=transformer_outputs.hidden_states,
1414
+ attentions=transformer_outputs.attentions,
1415
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,480 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import warnings
8
+ from typing import List, Optional, Tuple, Union
9
+
10
+ import torch.distributed as dist
11
+ import torch.utils.checkpoint
12
+ import transformers
13
+ from internvl.conversation import get_conv_template
14
+ from internvl.model.internlm2.modeling_internlm2 import InternLM2ForCausalLM
15
+ from internvl.model.phi3.modeling_phi3 import Phi3ForCausalLM
16
+ from peft import LoraConfig, get_peft_model
17
+ from torch import nn
18
+ from torch.nn import CrossEntropyLoss
19
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
20
+ LlamaTokenizer, Qwen2ForCausalLM)
21
+ from transformers.modeling_outputs import CausalLMOutputWithPast
22
+ from transformers.modeling_utils import PreTrainedModel
23
+ from transformers.utils import ModelOutput, logging
24
+
25
+ from .configuration_internvl_chat import InternVLChatConfig
26
+ from .modeling_intern_vit import InternVisionModel, has_flash_attn
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+
31
+ def version_cmp(v1, v2, op='eq'):
32
+ import operator
33
+
34
+ from packaging import version
35
+ op_func = getattr(operator, op)
36
+ return op_func(version.parse(v1), version.parse(v2))
37
+
38
+
39
+
40
+ class InternVLChatModel(PreTrainedModel):
41
+ config_class = InternVLChatConfig
42
+ main_input_name = 'pixel_values'
43
+ base_model_prefix = 'language_model'
44
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer',
45
+ 'Phi3DecoderLayer', 'Qwen2DecoderLayer']
46
+ _supports_flash_attn_2 = True
47
+ supports_gradient_checkpointing = True
48
+
49
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
50
+ super().__init__(config)
51
+
52
+ assert version_cmp(transformers.__version__, '4.37.0', 'ge')
53
+ image_size = config.force_image_size or config.vision_config.image_size
54
+ patch_size = config.vision_config.patch_size
55
+ self.patch_size = patch_size
56
+ self.select_layer = config.select_layer
57
+ self.template = config.template
58
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
59
+ self.downsample_ratio = config.downsample_ratio
60
+ self.ps_version = config.ps_version
61
+ self.llm_arch_name = config.llm_config.architectures[0]
62
+ # Enable Flash Attention if supported, otherwise fall back to eager attention.
63
+ use_flash_attn = use_flash_attn if has_flash_attn else False
64
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
65
+ config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
66
+
67
+ logger.info(f'num_image_token: {self.num_image_token}')
68
+ logger.info(f'ps_version: {self.ps_version}')
69
+ if vision_model is not None:
70
+ self.vision_model = vision_model
71
+ else:
72
+ self.vision_model = InternVisionModel(config.vision_config)
73
+ if language_model is not None:
74
+ self.language_model = language_model
75
+ else:
76
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
77
+ self.language_model = LlamaForCausalLM(config.llm_config)
78
+ elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
79
+ self.language_model = InternLM2ForCausalLM(config.llm_config)
80
+ elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
81
+ self.language_model = Phi3ForCausalLM(config.llm_config)
82
+ elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
83
+ self.language_model = Qwen2ForCausalLM(config.llm_config)
84
+ else:
85
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
86
+
87
+ vit_hidden_size = config.vision_config.hidden_size
88
+ llm_hidden_size = config.llm_config.hidden_size
89
+
90
+ self.mlp1 = nn.Sequential(
91
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
92
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
93
+ nn.GELU(),
94
+ nn.Linear(llm_hidden_size, llm_hidden_size)
95
+ )
96
+
97
+ self.img_context_token_id = None
98
+ self.pause_token_start_id = None
99
+ self.pause_token_end_id = None
100
+ self.conv_template = get_conv_template(self.template)
101
+ if hasattr(config, 'system_message'):
102
+ self.system_message = config.system_message
103
+ else:
104
+ self.system_message = self.conv_template.system_message
105
+ self.num_samples = 0
106
+
107
+ if config.use_backbone_lora:
108
+ self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
109
+
110
+ if config.use_llm_lora:
111
+ self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
112
+
113
+
114
+
115
+
116
+ def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
117
+ lora_config = LoraConfig(
118
+ r=r,
119
+ target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
120
+ lora_alpha=lora_alpha,
121
+ lora_dropout=lora_dropout,
122
+ )
123
+ self.vision_model = get_peft_model(self.vision_model, lora_config)
124
+ self.vision_model.print_trainable_parameters()
125
+
126
+ def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
127
+ # Determine the target modules based on the architecture of the language model
128
+ if self.llm_arch_name == 'InternLM2ForCausalLM':
129
+ target_modules = ['attention.wqkv', 'attention.wo', 'feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3']
130
+ elif self.llm_arch_name == 'Phi3ForCausalLM':
131
+ target_modules = ['mlp.down_proj', 'mlp.gate_up_proj', 'self_attn.o_proj', 'self_attn.qkv_proj']
132
+ elif self.llm_arch_name in ['Qwen2ForCausalLM', 'LlamaForCausalLM']:
133
+ target_modules = ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
134
+ 'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj']
135
+ else:
136
+ raise NotImplemented
137
+ lora_config = LoraConfig(
138
+ r=r,
139
+ target_modules=target_modules,
140
+ lora_alpha=lora_alpha,
141
+ lora_dropout=lora_dropout,
142
+ task_type='CAUSAL_LM'
143
+ )
144
+ self.language_model = get_peft_model(self.language_model, lora_config)
145
+ self.language_model.enable_input_require_grads()
146
+ self.language_model.print_trainable_parameters()
147
+
148
+ def forward(
149
+ self,
150
+ pixel_values: torch.FloatTensor,
151
+ input_ids: torch.LongTensor = None,
152
+ attention_mask: Optional[torch.Tensor] = None,
153
+ position_ids: Optional[torch.LongTensor] = None,
154
+ image_flags: Optional[torch.LongTensor] = None,
155
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
156
+ labels: Optional[torch.LongTensor] = None,
157
+ use_cache: Optional[bool] = None,
158
+ output_attentions: Optional[bool] = None,
159
+ output_hidden_states: Optional[bool] = None,
160
+ return_dict: Optional[bool] = None,
161
+ statistics: Optional[torch.LongTensor] = None,
162
+ loss_weight: Optional[List] = None,
163
+ loss_reduction_all_gather: Optional[bool] = False,
164
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
165
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
166
+
167
+ # 处理 image flags
168
+ image_flags = image_flags.squeeze(-1)
169
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
170
+
171
+ # 提取视觉特征
172
+ vit_embeds = self.extract_feature(pixel_values)
173
+ vit_embeds = vit_embeds[image_flags == 1]
174
+ vit_batch_size = pixel_values.shape[0]
175
+
176
+ # 处理输入嵌入
177
+ B, N, C = input_embeds.shape
178
+ input_embeds = input_embeds.reshape(B * N, C)
179
+
180
+ # 打印动态信息(分布式训练)
181
+ if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
182
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
183
+ if statistics is not None:
184
+ num_samples, num_padding_tokens, num_padding_images = statistics.tolist()
185
+ self.num_samples += num_samples
186
+ print(f'total_samples={self.num_samples}, {num_samples=}, {num_padding_tokens=}, {num_padding_images=}')
187
+
188
+ # 处理图像上下文 token
189
+ input_ids = input_ids.reshape(B * N)
190
+ selected = (input_ids == self.img_context_token_id)
191
+ try:
192
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
193
+ ignore_flag = False
194
+ except Exception as e:
195
+ vit_embeds = vit_embeds.reshape(-1, C)
196
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
197
+ f'vit_embeds.shape={vit_embeds.shape}')
198
+ n_token = selected.sum()
199
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
200
+ ignore_flag = True
201
+
202
+ # 恢复输入嵌入的形状
203
+ input_embeds = input_embeds.reshape(B, N, C)
204
+
205
+ # 调用语言模型
206
+ outputs = self.language_model(
207
+ inputs_embeds=input_embeds,
208
+ attention_mask=attention_mask,
209
+ position_ids=position_ids,
210
+ past_key_values=past_key_values,
211
+ use_cache=use_cache,
212
+ output_attentions=output_attentions,
213
+ output_hidden_states=output_hidden_states,
214
+ return_dict=return_dict,
215
+ )
216
+ logits = outputs.logits
217
+
218
+ # 计算损失
219
+ loss = None
220
+ if labels is not None:
221
+ # Shift logits 和 labels
222
+ shift_logits = logits[..., :-1, :].contiguous()
223
+ shift_labels = labels[..., 1:].contiguous()
224
+
225
+ # 创建损失掩码,忽略 pause token
226
+ loss_mask = (shift_labels < self.pause_token_start_id).float()
227
+
228
+ # 计算交叉熵损失
229
+ loss_fct = CrossEntropyLoss(reduction='none')
230
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
231
+ shift_labels = shift_labels.view(-1)
232
+ loss = loss_fct(shift_logits, shift_labels)
233
+ # 打印mask前信息
234
+ print("-------------loss before mask:------------", loss)
235
+
236
+ # 应用损失掩码
237
+ loss = (loss * loss_mask.view(-1)).sum() / loss_mask.sum()
238
+
239
+ # 打印mask后信息
240
+ print("-------------loss after mask:-------------", loss)
241
+
242
+
243
+ # 如果存在 loss_weight,则进一步调整损失
244
+ if loss_weight is not None:
245
+ loss_weight = torch.tensor(loss_weight, dtype=torch.float32, device=labels.device)
246
+ shift_weights = loss_weight[..., 1:].contiguous()
247
+ shift_weights = shift_weights.view(-1)
248
+ shift_weights_sum = shift_weights.sum()
249
+ if loss_reduction_all_gather:
250
+ dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG)
251
+ loss = loss * shift_weights
252
+ loss = loss.sum() / shift_weights_sum
253
+
254
+ # 如果 ignore_flag 为 True,则忽略损失
255
+ if ignore_flag:
256
+ loss = loss * 0.0
257
+
258
+ # 返回结果
259
+ if not return_dict:
260
+ output = (logits,) + outputs[1:]
261
+ return (loss,) + output if loss is not None else output
262
+
263
+ return CausalLMOutputWithPast(
264
+ loss=loss,
265
+ logits=logits,
266
+ past_key_values=outputs.past_key_values,
267
+ hidden_states=outputs.hidden_states,
268
+ attentions=outputs.attentions,
269
+ )
270
+
271
+ def pixel_shuffle(self, x, scale_factor=0.5):
272
+ n, w, h, c = x.size()
273
+ # N, W, H, C --> N, W, H * scale, C // scale
274
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
275
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
276
+ x = x.permute(0, 2, 1, 3).contiguous()
277
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
278
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
279
+ int(c / (scale_factor * scale_factor)))
280
+ if self.ps_version == 'v1':
281
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
282
+ 'which results in a transposed image.')
283
+ else:
284
+ x = x.permute(0, 2, 1, 3).contiguous()
285
+ return x
286
+
287
+ def extract_feature(self, pixel_values):
288
+ if self.select_layer == -1:
289
+ vit_embeds = self.vision_model(
290
+ pixel_values=pixel_values,
291
+ output_hidden_states=False,
292
+ return_dict=True).last_hidden_state
293
+ else:
294
+ vit_embeds = self.vision_model(
295
+ pixel_values=pixel_values,
296
+ output_hidden_states=True,
297
+ return_dict=True).hidden_states[self.select_layer]
298
+ vit_embeds = vit_embeds[:, 1:, :]
299
+
300
+ h = w = int(vit_embeds.shape[1] ** 0.5)
301
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
302
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
303
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
304
+ vit_embeds = self.mlp1(vit_embeds)
305
+ return vit_embeds
306
+
307
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
308
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
309
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
310
+ if history is not None or return_history:
311
+ print('Now multi-turn chat is not supported in batch_chat.')
312
+ raise NotImplementedError
313
+
314
+ if image_counts is not None:
315
+ num_patches_list = image_counts
316
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
317
+
318
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
319
+ self.img_context_token_id = img_context_token_id
320
+
321
+ pause_token_start_id = tokenizer.convert_tokens_to_ids("<pause_0>")
322
+ self.pause_token_start_id = pause_token_start_id
323
+
324
+ pause_token_end_id = tokenizer.convert_tokens_to_ids("<pause_9>")
325
+ self.pause_token_end_id = pause_token_end_id
326
+
327
+ if verbose and pixel_values is not None:
328
+ image_bs = pixel_values.shape[0]
329
+ print(f'dynamic ViT batch size: {image_bs}')
330
+
331
+ queries = []
332
+ for idx, num_patches in enumerate(num_patches_list):
333
+ question = questions[idx]
334
+ if pixel_values is not None and '<image>' not in question:
335
+ question = '<image>\n' + question
336
+ template = get_conv_template(self.template)
337
+ template.system_message = self.system_message
338
+ template.append_message(template.roles[0], question)
339
+ template.append_message(template.roles[1], None)
340
+ query = template.get_prompt()
341
+
342
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
343
+ query = query.replace('<image>', image_tokens, 1)
344
+ queries.append(query)
345
+
346
+ tokenizer.padding_side = 'left'
347
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
348
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
349
+ input_ids = model_inputs['input_ids'].to(device)
350
+ attention_mask = model_inputs['attention_mask'].to(device)
351
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
352
+ generation_config['eos_token_id'] = eos_token_id
353
+ generation_output = self.generate(
354
+ pixel_values=pixel_values,
355
+ input_ids=input_ids,
356
+ attention_mask=attention_mask,
357
+ **generation_config
358
+ )
359
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
360
+ responses = [response.split(template.sep.strip())[0].strip() for response in responses]
361
+ return responses
362
+
363
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
364
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
365
+ verbose=False):
366
+
367
+ if history is None and pixel_values is not None and '<image>' not in question:
368
+ question = '<image>\n' + question
369
+
370
+ if num_patches_list is None:
371
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
372
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
373
+
374
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
375
+ self.img_context_token_id = img_context_token_id
376
+
377
+ pause_token_start_id = tokenizer.convert_tokens_to_ids("<pause_0>")
378
+ self.pause_token_start_id = pause_token_start_id
379
+
380
+ pause_token_end_id = tokenizer.convert_tokens_to_ids("<pause_9>")
381
+ self.pause_token_end_id = pause_token_end_id
382
+
383
+ template = get_conv_template(self.template)
384
+ template.system_message = self.system_message
385
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
386
+
387
+ history = [] if history is None else history
388
+ for (old_question, old_answer) in history:
389
+ template.append_message(template.roles[0], old_question)
390
+ template.append_message(template.roles[1], old_answer)
391
+ template.append_message(template.roles[0], question)
392
+ template.append_message(template.roles[1], None)
393
+ query = template.get_prompt()
394
+
395
+ if verbose and pixel_values is not None:
396
+ image_bs = pixel_values.shape[0]
397
+ print(f'dynamic ViT batch size: {image_bs}')
398
+
399
+ for num_patches in num_patches_list:
400
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
401
+ query = query.replace('<image>', image_tokens, 1)
402
+
403
+ model_inputs = tokenizer(query, return_tensors='pt')
404
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
405
+ input_ids = model_inputs['input_ids'].to(device)
406
+ attention_mask = model_inputs['attention_mask'].to(device)
407
+ generation_config['eos_token_id'] = eos_token_id
408
+ generation_output = self.generate(
409
+ pixel_values=pixel_values,
410
+ input_ids=input_ids,
411
+ attention_mask=attention_mask,
412
+ **generation_config
413
+ )
414
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
415
+ response = response.split(template.sep.strip())[0].strip()
416
+ history.append((question, response))
417
+ if return_history:
418
+ return response, history
419
+ else:
420
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
421
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
422
+ if verbose:
423
+ print(query_to_print, response)
424
+ return response
425
+
426
+ @torch.no_grad()
427
+ def generate(
428
+ self,
429
+ pixel_values: Optional[torch.FloatTensor] = None,
430
+ input_ids: Optional[torch.FloatTensor] = None,
431
+ attention_mask: Optional[torch.LongTensor] = None,
432
+ visual_features: Optional[torch.FloatTensor] = None,
433
+ generation_config: Optional[GenerationConfig] = None,
434
+ output_hidden_states: Optional[bool] = None,
435
+ **generate_kwargs,
436
+ ) -> torch.LongTensor:
437
+
438
+ assert self.img_context_token_id is not None
439
+ if pixel_values is not None:
440
+ if visual_features is not None:
441
+ vit_embeds = visual_features
442
+ else:
443
+ vit_embeds = self.extract_feature(pixel_values)
444
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
445
+ B, N, C = input_embeds.shape
446
+ input_embeds = input_embeds.reshape(B * N, C)
447
+
448
+ input_ids = input_ids.reshape(B * N)
449
+ selected = (input_ids == self.img_context_token_id)
450
+ assert selected.sum() != 0
451
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
452
+
453
+ input_embeds = input_embeds.reshape(B, N, C)
454
+ else:
455
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
456
+
457
+ outputs = self.language_model.generate(
458
+ inputs_embeds=input_embeds,
459
+ attention_mask=attention_mask,
460
+ generation_config=generation_config,
461
+ output_hidden_states=output_hidden_states,
462
+ use_cache=True,
463
+ **generate_kwargs,
464
+ )
465
+ # 过滤掉 pause token 的输出
466
+ mask = outputs < self.pause_token_start_id
467
+ outputs = torch.where(mask, outputs, torch.tensor(-100, device=outputs.device)) # 将 pause token 替换为 -100
468
+
469
+ return outputs
470
+
471
+ @property
472
+ def lm_head(self):
473
+ return self.language_model.get_output_embeddings()
474
+
475
+ def get_input_embeddings(self):
476
+ return self.language_model.get_input_embeddings()
477
+
478
+ def get_output_embeddings(self):
479
+ return self.language_model.get_output_embeddings()
480
+
special_tokens_map.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>",
16
+ "<img>",
17
+ "</img>",
18
+ "<IMG_CONTEXT>",
19
+ "<quad>",
20
+ "</quad>",
21
+ "<ref>",
22
+ "</ref>",
23
+ "<box>",
24
+ "</box>",
25
+ "<pause_0>",
26
+ "<pause_1>",
27
+ "<pause_2>",
28
+ "<pause_3>",
29
+ "<pause_4>",
30
+ "<pause_5>",
31
+ "<pause_6>",
32
+ "<pause_7>",
33
+ "<pause_8>",
34
+ "<pause_9>"
35
+ ],
36
+ "eos_token": {
37
+ "content": "<|im_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false
42
+ },
43
+ "pad_token": {
44
+ "content": "<|endoftext|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false
49
+ }
50
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,379 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|im_start|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "151645": {
23
+ "content": "<|im_end|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "151646": {
31
+ "content": "<|object_ref_start|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|object_ref_end|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "151648": {
47
+ "content": "<|box_start|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "151649": {
55
+ "content": "<|box_end|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "151665": {
183
+ "content": "<img>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ },
190
+ "151666": {
191
+ "content": "</img>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": true
197
+ },
198
+ "151667": {
199
+ "content": "<IMG_CONTEXT>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": true
205
+ },
206
+ "151668": {
207
+ "content": "<quad>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": true
213
+ },
214
+ "151669": {
215
+ "content": "</quad>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": true
221
+ },
222
+ "151670": {
223
+ "content": "<ref>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "151671": {
231
+ "content": "</ref>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": true
237
+ },
238
+ "151672": {
239
+ "content": "<box>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": false,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "151673": {
247
+ "content": "</box>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": false,
251
+ "single_word": false,
252
+ "special": true
253
+ },
254
+ "151674": {
255
+ "content": "<pause_0>",
256
+ "lstrip": false,
257
+ "normalized": false,
258
+ "rstrip": false,
259
+ "single_word": false,
260
+ "special": true
261
+ },
262
+ "151675": {
263
+ "content": "<pause_1>",
264
+ "lstrip": false,
265
+ "normalized": false,
266
+ "rstrip": false,
267
+ "single_word": false,
268
+ "special": true
269
+ },
270
+ "151676": {
271
+ "content": "<pause_2>",
272
+ "lstrip": false,
273
+ "normalized": false,
274
+ "rstrip": false,
275
+ "single_word": false,
276
+ "special": true
277
+ },
278
+ "151677": {
279
+ "content": "<pause_3>",
280
+ "lstrip": false,
281
+ "normalized": false,
282
+ "rstrip": false,
283
+ "single_word": false,
284
+ "special": true
285
+ },
286
+ "151678": {
287
+ "content": "<pause_4>",
288
+ "lstrip": false,
289
+ "normalized": false,
290
+ "rstrip": false,
291
+ "single_word": false,
292
+ "special": true
293
+ },
294
+ "151679": {
295
+ "content": "<pause_5>",
296
+ "lstrip": false,
297
+ "normalized": false,
298
+ "rstrip": false,
299
+ "single_word": false,
300
+ "special": true
301
+ },
302
+ "151680": {
303
+ "content": "<pause_6>",
304
+ "lstrip": false,
305
+ "normalized": false,
306
+ "rstrip": false,
307
+ "single_word": false,
308
+ "special": true
309
+ },
310
+ "151681": {
311
+ "content": "<pause_7>",
312
+ "lstrip": false,
313
+ "normalized": false,
314
+ "rstrip": false,
315
+ "single_word": false,
316
+ "special": true
317
+ },
318
+ "151682": {
319
+ "content": "<pause_8>",
320
+ "lstrip": false,
321
+ "normalized": false,
322
+ "rstrip": false,
323
+ "single_word": false,
324
+ "special": true
325
+ },
326
+ "151683": {
327
+ "content": "<pause_9>",
328
+ "lstrip": false,
329
+ "normalized": false,
330
+ "rstrip": false,
331
+ "single_word": false,
332
+ "special": true
333
+ }
334
+ },
335
+ "additional_special_tokens": [
336
+ "<|im_start|>",
337
+ "<|im_end|>",
338
+ "<|object_ref_start|>",
339
+ "<|object_ref_end|>",
340
+ "<|box_start|>",
341
+ "<|box_end|>",
342
+ "<|quad_start|>",
343
+ "<|quad_end|>",
344
+ "<|vision_start|>",
345
+ "<|vision_end|>",
346
+ "<|vision_pad|>",
347
+ "<|image_pad|>",
348
+ "<|video_pad|>",
349
+ "<img>",
350
+ "</img>",
351
+ "<IMG_CONTEXT>",
352
+ "<quad>",
353
+ "</quad>",
354
+ "<ref>",
355
+ "</ref>",
356
+ "<box>",
357
+ "</box>",
358
+ "<pause_0>",
359
+ "<pause_1>",
360
+ "<pause_2>",
361
+ "<pause_3>",
362
+ "<pause_4>",
363
+ "<pause_5>",
364
+ "<pause_6>",
365
+ "<pause_7>",
366
+ "<pause_8>",
367
+ "<pause_9>"
368
+ ],
369
+ "bos_token": null,
370
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
371
+ "clean_up_tokenization_spaces": false,
372
+ "eos_token": "<|im_end|>",
373
+ "errors": "replace",
374
+ "model_max_length": 8192,
375
+ "pad_token": "<|endoftext|>",
376
+ "split_special_tokens": false,
377
+ "tokenizer_class": "Qwen2Tokenizer",
378
+ "unk_token": null
379
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff