File size: 8,914 Bytes
498b1ed feabfff 498b1ed 8fe8496 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
---
license: agpl-3.0
datasets:
- lumolabs-ai/Lumo-Iris-DS-Instruct
language:
- en
base_model:
- deepseek-ai/DeepSeek-R1-Distill-Llama-8B
---
# 🧠 Lumo-DeepSeek-R1-8B Model

[](https://www.gnu.org/licenses/agpl-3.0.html)
[](https://huggingface.co/lumolabs-ai/Lumo-DeepSeek-R1-8B)
## **Overview**
The **Lumo-DeepSeek-R1-8B** model is a fine-tuned version of DeepSeek-R1-Distill-Llama-8B, specifically optimized for Solana and its associated ecosystems. This model is designed to provide highly accurate and contextual assistance for developers, offering capabilities such as answering complex questions, generating code snippets, debugging, and explaining technical concepts. The fine-tuning process leverages the **Lumo-Iris-DS-Instruct** dataset, ensuring the model is well-suited for Solana-specific tasks.
**(Knowledge cut-off date: 17th January, 2025)**
### 🎯 **Key Features**
- Optimized for **Solana-specific queries** across ecosystems like Raydium, Helius, Jito, and more.
- Instruction fine-tuned for **developer-centric workflows**.
- Lightweight parameter-efficient fine-tuning via **LoRA (Low-Rank Adaptation)**.
- **Supports multi-turn conversations** with context retention.
- Outputs complete code snippets and **real-world usage examples**.
---
## 🚀 **Model Card**
| **Parameter** | **Details** |
|----------------------------|----------------------------------------------------------------------------------------------|
| **Base Model** | DeepSeek-R1-Distill-Llama-8B |
| **Fine-Tuning Framework** | HuggingFace Transformers, LoRA |
| **Dataset Size** | 28,518 high-quality Q&A pairs |
| **Context Length** | 128,000 tokens |
| **Training Steps** | 10,000 |
| **Learning Rate** | 3e-4 |
| **Batch Size** | 1 per GPU with gradient accumulation |
| **Epochs** | 2 |
| **Model Size** | 8 billion parameters (adapter size ~10 MB) |
| **Pre-trained Tasks** | Instruction following, Code generation, Debugging, Multi-turn Q&A |
---
## 📊 **Model Architecture**
### **Training Workflow**
The model was fine-tuned using parameter-efficient methods with **LoRA** to adapt to the Solana-specific domain. Below is a visualization of the training process:

### **Dataset Sources**
The dataset comprises curated documentation, cookbooks, and API references from the following sources:
| Source | Links |
|--------------------|--------------------------------------------------------------------------------|
| **Lumo-Iris-DS-Instruct** | [About Lumo-Iris](https://www.lumolabs.ai/lumo-dataset/about-lumo-iris) |
---
## 🛠️ **Installation and Usage**
### **1. Installation**
```bash
pip install transformers datasets peft wandb
```
### **2. Load the Model**
```python
from transformers import LlamaForCausalLM, AutoTokenizer
model_name = "lumolabs-ai/Lumo-DeepSeek-R1-8B"
model = LlamaForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
### **3. Run Inference**
```python
def complete_chat(model, tokenizer, messages, max_new_tokens=128):
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True, add_generation_prompt=True).to(model.device)
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=max_new_tokens)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
response = complete_chat(model, tokenizer, [
{"role": "system", "content": "You are Lumo, a helpful assistant."},
{"role": "user", "content": "Explain how to interact with Raydium API for token swaps."}
])
print(response)
```
---
## 📈 **Performance**
| **Metric** | **Value** |
|---------------------|-----------------------|
| **Validation Loss** | 1.73 |
| **BLEU Score** | 89% |
| **Code Accuracy** | 92% |
| **Token Efficiency**| ~128,000 tokens max |
### **Fine-Tuning Loss Graph**

---
## 📂 **Dataset**
| Split | Count | Description |
|---------|--------|--------------------------------|
| **Train** | 27.1k | High-quality Q&A pairs |
| **Test** | 1.43k | Evaluation dataset for testing|
**Dataset Format (JSONL):**
```json
{
"question": "How to use the Helius API for transaction indexing?",
"answer": "To index transactions, use Helius's Webhooks API ...",
"chunk": "Helius API allows you to set up ..."
}
```
---
## 🔍 **Technical Insights**
### **LoRA Configuration**
- Rank: 8
- Alpha: 32
- Dropout: 0.01
- Adapter Size: ~10 MB
### **Optimization**
- Mixed Precision (FP16) for faster inference.
- Gradient Accumulation for memory efficiency.
- Parameter-efficient tuning to preserve base model knowledge.
---
## 🌟 **Try the model**
🚀 [Lumo-DeepSeek-R1-8B Inferencing](http://try-deepseek-lumo8b.lumolabs.ai)
---
## 📊 **Performance Comparison**
### **DeepSeek-R1-Evaluation**
<div align="center">
| Category | Benchmark (Metric) | Claude-3.5-Sonnet-1022 | GPT-4o 0513 | DeepSeek V3 | OpenAI o1-mini | OpenAI o1-1217 | DeepSeek R1 | Lumo-DeepSeek-R1-8B |
|----------|-------------------|----------------------|------------|--------------|----------------|------------|--------------|---------------------|
| | Architecture | - | - | MoE | - | - | MoE | MoE |
| | # Activated Params | - | - | 37B | - | - | 37B | 8B |
| | # Total Params | - | - | 671B | - | - | 671B | 8B |
| English | MMLU (Pass@1) | 88.3 | 87.2 | 88.5 | 85.2 | **91.8** | 90.8 | 89.5 |
| | MMLU-Redux (EM) | 88.9 | 88.0 | 89.1 | 86.7 | - | **92.9** | 91.2 |
| | MMLU-Pro (EM) | 78.0 | 72.6 | 75.9 | 80.3 | - | **84.0** | 82.5 |
| | DROP (3-shot F1) | 88.3 | 83.7 | 91.6 | 83.9 | 90.2 | **92.2** | 91.0 |
| | IF-Eval (Prompt Strict) | **86.5** | 84.3 | 86.1 | 84.8 | - | 83.3 | 84.0 |
| | GPQA-Diamond (Pass@1) | 65.0 | 49.9 | 59.1 | 60.0 | **75.7** | 71.5 | 70.0 |
| | SimpleQA (Correct) | 28.4 | 38.2 | 24.9 | 7.0 | **47.0** | 30.1 | 29.5 |
| | FRAMES (Acc.) | 72.5 | 80.5 | 73.3 | 76.9 | - | **82.5** | 81.0 |
| | AlpacaEval2.0 (LC-winrate) | 52.0 | 51.1 | 70.0 | 57.8 | - | **87.6** | 86.0 |
| | ArenaHard (GPT-4-1106) | 85.2 | 80.4 | 85.5 | 92.0 | - | **92.3** | 91.5 |
| Code | LiveCodeBench (Pass@1-COT) | 33.8 | 34.2 | - | 53.8 | 63.4 | **65.9** | 64.5 |
| | Codeforces (Percentile) | 20.3 | 23.6 | 58.7 | 93.4 | **96.6** | 96.3 | 95.0 |
| | Codeforces (Rating) | 717 | 759 | 1134 | 1820 | **2061** | 2029 | 2000 |
| | SWE Verified (Resolved) | **50.8** | 38.8 | 42.0 | 41.6 | 48.9 | 49.2 | 48.5 |
| | Aider-Polyglot (Acc.) | 45.3 | 16.0 | 49.6 | 32.9 | **61.7** | 53.3 | 52.0 |
| Math | AIME 2024 (Pass@1) | 16.0 | 9.3 | 39.2 | 63.6 | 79.2 | **79.8** | 78.5 |
| | MATH-500 (Pass@1) | 78.3 | 74.6 | 90.2 | 90.0 | 96.4 | **97.3** | 96.0 |
| | CNMO 2024 (Pass@1) | 13.1 | 10.8 | 43.2 | 67.6 | - | **78.8** | 77.5 |
| Chinese | CLUEWSC (EM) | 85.4 | 87.9 | 90.9 | 89.9 | - | **92.8** | 91.5 |
| | C-Eval (EM) | 76.7 | 76.0 | 86.5 | 68.9 | - | **91.8** | 90.0 |
| | C-SimpleQA (Correct) | 55.4 | 58.7 | **68.0** | 40.3 | - | 63.7 | 62.5 |
</div>
---
## 🙌 **Contributing**
We welcome contributions to enhance the Lumo-DeepSeek-R1-8B model. Feel free to:
- Share your feedback on the HuggingFace Model Hub.
---
## 📜 **License**
This model is licensed under the **GNU Affero General Public License v3.0 (AGPLv3).**
---
## 📞 **Community**
For questions or support, reach out via:
- **Twitter**: [Lumo Labs](https://x.com/lumolabsdotai)
- **Telegram**: [Lumo Labs](https://t.me/lumolabsdotai)
---
## 🤝 **Acknowledgments**
Special thanks to the Solana ecosystem developers and the open-source community for their invaluable contributions and support.
--- |