lukahh commited on
Commit
bf1416b
·
verified ·
1 Parent(s): e6775ec

Training in progress, step 500

Browse files
README.md CHANGED
@@ -1,59 +1,40 @@
1
- ---
2
- library_name: peft
3
- base_model: openai/clip-vit-base-patch32
4
- tags:
5
- - generated_from_trainer
6
- - clip
7
- - lora
8
- - cultureclip
9
- - image-text-retrieval
10
- - merged-lora
11
- model-index:
12
- - name: cultureclip_lora_0310
13
- results: []
14
- ---
15
 
16
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
- should probably proofread and complete it, then remove this comment. -->
18
-
19
- # cultureclip_lora_0310
20
-
21
- This model is a fine-tuned version of [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) on an unknown dataset.
22
-
23
- ## Model description
24
-
25
- More information needed
26
-
27
- ## Intended uses & limitations
28
-
29
- More information needed
30
-
31
- ## Training and evaluation data
32
-
33
- More information needed
34
-
35
- ## Training procedure
36
-
37
- ### Training hyperparameters
38
-
39
- The following hyperparameters were used during training:
40
- - learning_rate: 0.0001
41
- - train_batch_size: 32
42
- - eval_batch_size: 8
43
- - seed: 42
44
- - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
45
- - lr_scheduler_type: linear
46
- - lr_scheduler_warmup_steps: 200
47
- - num_epochs: 1.0
48
-
49
- ### Training results
50
-
51
-
52
-
53
- ### Framework versions
54
-
55
- - PEFT 0.14.1.dev0
56
- - Transformers 4.49.0
57
- - Pytorch 2.5.1+cu124
58
- - Datasets 3.2.0
59
- - Tokenizers 0.21.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
+ # CultureCLIP模型(LoRA微调并合并)
3
+
4
+ 此模型是使用LoRA技术微调后的CLIP模型,LoRA权重已经与基础模型合并,可以直接加载使用。
5
+
6
+ ## 模型详情
7
+
8
+ - **基础模型**: openai/clip-vit-base-patch32
9
+ - **任务**: 对比学习图像-文本匹配
10
+ - **微调方法**: LoRA (Low-Rank Adaptation)
11
+ - **LoRA参数**:
12
+ - r: 8
13
+ - alpha: 16
14
+ - dropout: 0.1
15
+ - 应用于文本模型: True
16
+ - 应用于视觉模型: True
17
+ - 位置: all
18
+ - 参数类型: qkv
19
+ - 损失函数: cultureclip
20
+
21
+ ## 使用方法
22
+
23
+ ```python
24
+ from transformers import CLIPModel, CLIPProcessor
25
+
26
+ # 加载模型和处理器
27
+ model = CLIPModel.from_pretrained("cultureclip_lora_0310")
28
+ processor = CLIPProcessor.from_pretrained("cultureclip_lora_0310")
29
+
30
+ # 处理文本和图像
31
+ inputs = processor(
32
+ text=["一张猫的照片", "一张狗的照片"],
33
+ images=image,
34
+ return_tensors="pt",
35
+ padding=True
36
+ )
37
+
38
+ # 获取输出
39
+ outputs = model(**inputs)
40
+ ```
 
 
 
 
 
adapter_config.json CHANGED
@@ -24,9 +24,9 @@
24
  "rank_pattern": {},
25
  "revision": null,
26
  "target_modules": [
27
- "k_proj",
28
  "v_proj",
29
- "q_proj"
 
30
  ],
31
  "task_type": "FEATURE_EXTRACTION",
32
  "trainable_token_indices": null,
 
24
  "rank_pattern": {},
25
  "revision": null,
26
  "target_modules": [
 
27
  "v_proj",
28
+ "q_proj",
29
+ "k_proj"
30
  ],
31
  "task_type": "FEATURE_EXTRACTION",
32
  "trainable_token_indices": null,
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:49ec81c6d513a07cfdaab8eafc46ea5d6c44000742ed119056159ca928aa17ee
3
  size 2969784
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8868e7968837495ed0d18c89a05084a3f3591ccf5d5ab9b6d8220438427de51a
3
  size 2969784
all_results.json CHANGED
@@ -1,8 +1,12 @@
1
  {
2
- "epoch": 10.0,
 
 
 
 
3
  "total_flos": 0.0,
4
  "train_loss": 0.0,
5
- "train_runtime": 33040.718,
6
- "train_samples_per_second": 11.538,
7
- "train_steps_per_second": 0.361
8
  }
 
1
  {
2
+ "epoch": 1.0,
3
+ "eval_loss": 0.0,
4
+ "eval_runtime": 177.4953,
5
+ "eval_samples_per_second": 11.431,
6
+ "eval_steps_per_second": 1.431,
7
  "total_flos": 0.0,
8
  "train_loss": 0.0,
9
+ "train_runtime": 3226.4538,
10
+ "train_samples_per_second": 11.815,
11
+ "train_steps_per_second": 0.369
12
  }
eval_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_loss": 0.0,
4
+ "eval_runtime": 177.4953,
5
+ "eval_samples_per_second": 11.431,
6
+ "eval_steps_per_second": 1.431
7
+ }
lora_adapter/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: openai/clip-vit-base-patch32
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.1.dev0
lora_adapter/adapter_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openai/clip-vit-base-patch32",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 8,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "k_proj",
28
+ "v_proj",
29
+ "q_proj"
30
+ ],
31
+ "task_type": "FEATURE_EXTRACTION",
32
+ "trainable_token_indices": null,
33
+ "use_dora": false,
34
+ "use_rslora": false
35
+ }
lora_adapter/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49ec81c6d513a07cfdaab8eafc46ea5d6c44000742ed119056159ca928aa17ee
3
+ size 2969784
tokenizer_config.json CHANGED
@@ -26,6 +26,7 @@
26
  "extra_special_tokens": {},
27
  "model_max_length": 77,
28
  "pad_token": "<|endoftext|>",
 
29
  "tokenizer_class": "CLIPTokenizer",
30
  "unk_token": "<|endoftext|>"
31
  }
 
26
  "extra_special_tokens": {},
27
  "model_max_length": 77,
28
  "pad_token": "<|endoftext|>",
29
+ "processor_class": "CLIPProcessor",
30
  "tokenizer_class": "CLIPTokenizer",
31
  "unk_token": "<|endoftext|>"
32
  }
train_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
- "epoch": 10.0,
3
  "total_flos": 0.0,
4
  "train_loss": 0.0,
5
- "train_runtime": 33040.718,
6
- "train_samples_per_second": 11.538,
7
- "train_steps_per_second": 0.361
8
  }
 
1
  {
2
+ "epoch": 1.0,
3
  "total_flos": 0.0,
4
  "train_loss": 0.0,
5
+ "train_runtime": 3226.4538,
6
+ "train_samples_per_second": 11.815,
7
+ "train_steps_per_second": 0.369
8
  }
trainer_state.json CHANGED
@@ -1,9 +1,9 @@
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
- "epoch": 10.0,
5
  "eval_steps": 500.0,
6
- "global_step": 11920,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
@@ -11,178 +11,31 @@
11
  {
12
  "epoch": 0.41946308724832215,
13
  "grad_norm": 0.0,
14
- "learning_rate": 9.744027303754266e-05,
15
  "loss": 0.0,
16
  "step": 500
17
  },
18
  {
19
  "epoch": 0.8389261744966443,
20
  "grad_norm": 0.0,
21
- "learning_rate": 9.31740614334471e-05,
22
  "loss": 0.0,
23
  "step": 1000
24
  },
25
  {
26
- "epoch": 1.2583892617449663,
27
- "grad_norm": 0.0,
28
- "learning_rate": 8.890784982935154e-05,
29
- "loss": 0.0,
30
- "step": 1500
31
- },
32
- {
33
- "epoch": 1.6778523489932886,
34
- "grad_norm": 0.0,
35
- "learning_rate": 8.464163822525599e-05,
36
- "loss": 0.0,
37
- "step": 2000
38
- },
39
- {
40
- "epoch": 2.097315436241611,
41
- "grad_norm": 0.0,
42
- "learning_rate": 8.037542662116041e-05,
43
- "loss": 0.0,
44
- "step": 2500
45
- },
46
- {
47
- "epoch": 2.5167785234899327,
48
- "grad_norm": 0.0,
49
- "learning_rate": 7.610921501706485e-05,
50
- "loss": 0.0,
51
- "step": 3000
52
- },
53
- {
54
- "epoch": 2.936241610738255,
55
- "grad_norm": 0.0,
56
- "learning_rate": 7.184300341296929e-05,
57
- "loss": 0.0,
58
- "step": 3500
59
- },
60
- {
61
- "epoch": 3.3557046979865772,
62
- "grad_norm": 0.0,
63
- "learning_rate": 6.757679180887372e-05,
64
- "loss": 0.0,
65
- "step": 4000
66
- },
67
- {
68
- "epoch": 3.7751677852348995,
69
- "grad_norm": 0.0,
70
- "learning_rate": 6.331058020477816e-05,
71
- "loss": 0.0,
72
- "step": 4500
73
- },
74
- {
75
- "epoch": 4.194630872483222,
76
- "grad_norm": 0.0,
77
- "learning_rate": 5.9044368600682596e-05,
78
- "loss": 0.0,
79
- "step": 5000
80
- },
81
- {
82
- "epoch": 4.614093959731544,
83
- "grad_norm": 0.0,
84
- "learning_rate": 5.477815699658704e-05,
85
- "loss": 0.0,
86
- "step": 5500
87
- },
88
- {
89
- "epoch": 5.033557046979865,
90
- "grad_norm": 0.0,
91
- "learning_rate": 5.051194539249147e-05,
92
- "loss": 0.0,
93
- "step": 6000
94
- },
95
- {
96
- "epoch": 5.453020134228188,
97
- "grad_norm": 0.0,
98
- "learning_rate": 4.6245733788395906e-05,
99
- "loss": 0.0,
100
- "step": 6500
101
- },
102
- {
103
- "epoch": 5.87248322147651,
104
- "grad_norm": 0.0,
105
- "learning_rate": 4.197952218430034e-05,
106
- "loss": 0.0,
107
- "step": 7000
108
- },
109
- {
110
- "epoch": 6.291946308724833,
111
- "grad_norm": 0.0,
112
- "learning_rate": 3.771331058020478e-05,
113
- "loss": 0.0,
114
- "step": 7500
115
- },
116
- {
117
- "epoch": 6.7114093959731544,
118
- "grad_norm": 0.0,
119
- "learning_rate": 3.3447098976109216e-05,
120
- "loss": 0.0,
121
- "step": 8000
122
- },
123
- {
124
- "epoch": 7.130872483221476,
125
- "grad_norm": 0.0,
126
- "learning_rate": 2.9180887372013653e-05,
127
- "loss": 0.0,
128
- "step": 8500
129
- },
130
- {
131
- "epoch": 7.550335570469799,
132
- "grad_norm": 0.0,
133
- "learning_rate": 2.491467576791809e-05,
134
- "loss": 0.0,
135
- "step": 9000
136
- },
137
- {
138
- "epoch": 7.969798657718121,
139
- "grad_norm": 0.0,
140
- "learning_rate": 2.0648464163822527e-05,
141
- "loss": 0.0,
142
- "step": 9500
143
- },
144
- {
145
- "epoch": 8.389261744966444,
146
- "grad_norm": 0.0,
147
- "learning_rate": 1.6382252559726964e-05,
148
- "loss": 0.0,
149
- "step": 10000
150
- },
151
- {
152
- "epoch": 8.808724832214764,
153
- "grad_norm": 0.0,
154
- "learning_rate": 1.21160409556314e-05,
155
- "loss": 0.0,
156
- "step": 10500
157
- },
158
- {
159
- "epoch": 9.228187919463087,
160
- "grad_norm": 0.0,
161
- "learning_rate": 7.849829351535837e-06,
162
- "loss": 0.0,
163
- "step": 11000
164
- },
165
- {
166
- "epoch": 9.64765100671141,
167
- "grad_norm": 0.0,
168
- "learning_rate": 3.583617747440273e-06,
169
- "loss": 0.0,
170
- "step": 11500
171
- },
172
- {
173
- "epoch": 10.0,
174
- "step": 11920,
175
  "total_flos": 0.0,
176
  "train_loss": 0.0,
177
- "train_runtime": 33040.718,
178
- "train_samples_per_second": 11.538,
179
- "train_steps_per_second": 0.361
180
  }
181
  ],
182
  "logging_steps": 500,
183
- "max_steps": 11920,
184
  "num_input_tokens_seen": 0,
185
- "num_train_epochs": 10,
186
  "save_steps": 500,
187
  "stateful_callbacks": {
188
  "TrainerControl": {
 
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
  "eval_steps": 500.0,
6
+ "global_step": 1192,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
 
11
  {
12
  "epoch": 0.41946308724832215,
13
  "grad_norm": 0.0,
14
+ "learning_rate": 6.975806451612904e-05,
15
  "loss": 0.0,
16
  "step": 500
17
  },
18
  {
19
  "epoch": 0.8389261744966443,
20
  "grad_norm": 0.0,
21
+ "learning_rate": 1.935483870967742e-05,
22
  "loss": 0.0,
23
  "step": 1000
24
  },
25
  {
26
+ "epoch": 1.0,
27
+ "step": 1192,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  "total_flos": 0.0,
29
  "train_loss": 0.0,
30
+ "train_runtime": 3226.4538,
31
+ "train_samples_per_second": 11.815,
32
+ "train_steps_per_second": 0.369
33
  }
34
  ],
35
  "logging_steps": 500,
36
+ "max_steps": 1192,
37
  "num_input_tokens_seen": 0,
38
+ "num_train_epochs": 1,
39
  "save_steps": 500,
40
  "stateful_callbacks": {
41
  "TrainerControl": {
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:89854a6ac9d3a15c6c060052cff7026e0bc0cab411d0048e3cc2e42030fbaf6c
3
  size 5368
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c991884a7cddc5bd76499ee0cb5817dde4dcac81e368d0383c63155c0b7af023
3
  size 5368
vocab.json CHANGED
The diff for this file is too large to render. See raw diff