Training in progress, step 500
Browse files- README.md +39 -58
- adapter_config.json +2 -2
- adapter_model.safetensors +1 -1
- all_results.json +8 -4
- eval_results.json +7 -0
- lora_adapter/README.md +202 -0
- lora_adapter/adapter_config.json +35 -0
- lora_adapter/adapter_model.safetensors +3 -0
- tokenizer_config.json +1 -0
- train_results.json +4 -4
- trainer_state.json +11 -158
- training_args.bin +1 -1
- vocab.json +0 -0
README.md
CHANGED
@@ -1,59 +1,40 @@
|
|
1 |
-
---
|
2 |
-
library_name: peft
|
3 |
-
base_model: openai/clip-vit-base-patch32
|
4 |
-
tags:
|
5 |
-
- generated_from_trainer
|
6 |
-
- clip
|
7 |
-
- lora
|
8 |
-
- cultureclip
|
9 |
-
- image-text-retrieval
|
10 |
-
- merged-lora
|
11 |
-
model-index:
|
12 |
-
- name: cultureclip_lora_0310
|
13 |
-
results: []
|
14 |
-
---
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
##
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
- PEFT 0.14.1.dev0
|
56 |
-
- Transformers 4.49.0
|
57 |
-
- Pytorch 2.5.1+cu124
|
58 |
-
- Datasets 3.2.0
|
59 |
-
- Tokenizers 0.21.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
# CultureCLIP模型(LoRA微调并合并)
|
3 |
+
|
4 |
+
此模型是使用LoRA技术微调后的CLIP模型,LoRA权重已经与基础模型合并,可以直接加载使用。
|
5 |
+
|
6 |
+
## 模型详情
|
7 |
+
|
8 |
+
- **基础模型**: openai/clip-vit-base-patch32
|
9 |
+
- **任务**: 对比学习图像-文本匹配
|
10 |
+
- **微调方法**: LoRA (Low-Rank Adaptation)
|
11 |
+
- **LoRA参数**:
|
12 |
+
- r: 8
|
13 |
+
- alpha: 16
|
14 |
+
- dropout: 0.1
|
15 |
+
- 应用于文本模型: True
|
16 |
+
- 应用于视觉模型: True
|
17 |
+
- 位置: all
|
18 |
+
- 参数类型: qkv
|
19 |
+
- 损失函数: cultureclip
|
20 |
+
|
21 |
+
## 使用方法
|
22 |
+
|
23 |
+
```python
|
24 |
+
from transformers import CLIPModel, CLIPProcessor
|
25 |
+
|
26 |
+
# 加载模型和处理器
|
27 |
+
model = CLIPModel.from_pretrained("cultureclip_lora_0310")
|
28 |
+
processor = CLIPProcessor.from_pretrained("cultureclip_lora_0310")
|
29 |
+
|
30 |
+
# 处理文本和图像
|
31 |
+
inputs = processor(
|
32 |
+
text=["一张猫的照片", "一张狗的照片"],
|
33 |
+
images=image,
|
34 |
+
return_tensors="pt",
|
35 |
+
padding=True
|
36 |
+
)
|
37 |
+
|
38 |
+
# 获取输出
|
39 |
+
outputs = model(**inputs)
|
40 |
+
```
|
|
|
|
|
|
|
|
|
|
adapter_config.json
CHANGED
@@ -24,9 +24,9 @@
|
|
24 |
"rank_pattern": {},
|
25 |
"revision": null,
|
26 |
"target_modules": [
|
27 |
-
"k_proj",
|
28 |
"v_proj",
|
29 |
-
"q_proj"
|
|
|
30 |
],
|
31 |
"task_type": "FEATURE_EXTRACTION",
|
32 |
"trainable_token_indices": null,
|
|
|
24 |
"rank_pattern": {},
|
25 |
"revision": null,
|
26 |
"target_modules": [
|
|
|
27 |
"v_proj",
|
28 |
+
"q_proj",
|
29 |
+
"k_proj"
|
30 |
],
|
31 |
"task_type": "FEATURE_EXTRACTION",
|
32 |
"trainable_token_indices": null,
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2969784
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8868e7968837495ed0d18c89a05084a3f3591ccf5d5ab9b6d8220438427de51a
|
3 |
size 2969784
|
all_results.json
CHANGED
@@ -1,8 +1,12 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
|
|
|
|
|
|
|
|
3 |
"total_flos": 0.0,
|
4 |
"train_loss": 0.0,
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples_per_second": 11.
|
7 |
-
"train_steps_per_second": 0.
|
8 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"eval_loss": 0.0,
|
4 |
+
"eval_runtime": 177.4953,
|
5 |
+
"eval_samples_per_second": 11.431,
|
6 |
+
"eval_steps_per_second": 1.431,
|
7 |
"total_flos": 0.0,
|
8 |
"train_loss": 0.0,
|
9 |
+
"train_runtime": 3226.4538,
|
10 |
+
"train_samples_per_second": 11.815,
|
11 |
+
"train_steps_per_second": 0.369
|
12 |
}
|
eval_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"eval_loss": 0.0,
|
4 |
+
"eval_runtime": 177.4953,
|
5 |
+
"eval_samples_per_second": 11.431,
|
6 |
+
"eval_steps_per_second": 1.431
|
7 |
+
}
|
lora_adapter/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: openai/clip-vit-base-patch32
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.1.dev0
|
lora_adapter/adapter_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "openai/clip-vit-base-patch32",
|
5 |
+
"bias": "none",
|
6 |
+
"corda_config": null,
|
7 |
+
"eva_config": null,
|
8 |
+
"exclude_modules": null,
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 16,
|
17 |
+
"lora_bias": false,
|
18 |
+
"lora_dropout": 0.1,
|
19 |
+
"megatron_config": null,
|
20 |
+
"megatron_core": "megatron.core",
|
21 |
+
"modules_to_save": null,
|
22 |
+
"peft_type": "LORA",
|
23 |
+
"r": 8,
|
24 |
+
"rank_pattern": {},
|
25 |
+
"revision": null,
|
26 |
+
"target_modules": [
|
27 |
+
"k_proj",
|
28 |
+
"v_proj",
|
29 |
+
"q_proj"
|
30 |
+
],
|
31 |
+
"task_type": "FEATURE_EXTRACTION",
|
32 |
+
"trainable_token_indices": null,
|
33 |
+
"use_dora": false,
|
34 |
+
"use_rslora": false
|
35 |
+
}
|
lora_adapter/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49ec81c6d513a07cfdaab8eafc46ea5d6c44000742ed119056159ca928aa17ee
|
3 |
+
size 2969784
|
tokenizer_config.json
CHANGED
@@ -26,6 +26,7 @@
|
|
26 |
"extra_special_tokens": {},
|
27 |
"model_max_length": 77,
|
28 |
"pad_token": "<|endoftext|>",
|
|
|
29 |
"tokenizer_class": "CLIPTokenizer",
|
30 |
"unk_token": "<|endoftext|>"
|
31 |
}
|
|
|
26 |
"extra_special_tokens": {},
|
27 |
"model_max_length": 77,
|
28 |
"pad_token": "<|endoftext|>",
|
29 |
+
"processor_class": "CLIPProcessor",
|
30 |
"tokenizer_class": "CLIPTokenizer",
|
31 |
"unk_token": "<|endoftext|>"
|
32 |
}
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
"total_flos": 0.0,
|
4 |
"train_loss": 0.0,
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples_per_second": 11.
|
7 |
-
"train_steps_per_second": 0.
|
8 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 1.0,
|
3 |
"total_flos": 0.0,
|
4 |
"train_loss": 0.0,
|
5 |
+
"train_runtime": 3226.4538,
|
6 |
+
"train_samples_per_second": 11.815,
|
7 |
+
"train_steps_per_second": 0.369
|
8 |
}
|
trainer_state.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
-
"epoch":
|
5 |
"eval_steps": 500.0,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
@@ -11,178 +11,31 @@
|
|
11 |
{
|
12 |
"epoch": 0.41946308724832215,
|
13 |
"grad_norm": 0.0,
|
14 |
-
"learning_rate":
|
15 |
"loss": 0.0,
|
16 |
"step": 500
|
17 |
},
|
18 |
{
|
19 |
"epoch": 0.8389261744966443,
|
20 |
"grad_norm": 0.0,
|
21 |
-
"learning_rate":
|
22 |
"loss": 0.0,
|
23 |
"step": 1000
|
24 |
},
|
25 |
{
|
26 |
-
"epoch": 1.
|
27 |
-
"
|
28 |
-
"learning_rate": 8.890784982935154e-05,
|
29 |
-
"loss": 0.0,
|
30 |
-
"step": 1500
|
31 |
-
},
|
32 |
-
{
|
33 |
-
"epoch": 1.6778523489932886,
|
34 |
-
"grad_norm": 0.0,
|
35 |
-
"learning_rate": 8.464163822525599e-05,
|
36 |
-
"loss": 0.0,
|
37 |
-
"step": 2000
|
38 |
-
},
|
39 |
-
{
|
40 |
-
"epoch": 2.097315436241611,
|
41 |
-
"grad_norm": 0.0,
|
42 |
-
"learning_rate": 8.037542662116041e-05,
|
43 |
-
"loss": 0.0,
|
44 |
-
"step": 2500
|
45 |
-
},
|
46 |
-
{
|
47 |
-
"epoch": 2.5167785234899327,
|
48 |
-
"grad_norm": 0.0,
|
49 |
-
"learning_rate": 7.610921501706485e-05,
|
50 |
-
"loss": 0.0,
|
51 |
-
"step": 3000
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"epoch": 2.936241610738255,
|
55 |
-
"grad_norm": 0.0,
|
56 |
-
"learning_rate": 7.184300341296929e-05,
|
57 |
-
"loss": 0.0,
|
58 |
-
"step": 3500
|
59 |
-
},
|
60 |
-
{
|
61 |
-
"epoch": 3.3557046979865772,
|
62 |
-
"grad_norm": 0.0,
|
63 |
-
"learning_rate": 6.757679180887372e-05,
|
64 |
-
"loss": 0.0,
|
65 |
-
"step": 4000
|
66 |
-
},
|
67 |
-
{
|
68 |
-
"epoch": 3.7751677852348995,
|
69 |
-
"grad_norm": 0.0,
|
70 |
-
"learning_rate": 6.331058020477816e-05,
|
71 |
-
"loss": 0.0,
|
72 |
-
"step": 4500
|
73 |
-
},
|
74 |
-
{
|
75 |
-
"epoch": 4.194630872483222,
|
76 |
-
"grad_norm": 0.0,
|
77 |
-
"learning_rate": 5.9044368600682596e-05,
|
78 |
-
"loss": 0.0,
|
79 |
-
"step": 5000
|
80 |
-
},
|
81 |
-
{
|
82 |
-
"epoch": 4.614093959731544,
|
83 |
-
"grad_norm": 0.0,
|
84 |
-
"learning_rate": 5.477815699658704e-05,
|
85 |
-
"loss": 0.0,
|
86 |
-
"step": 5500
|
87 |
-
},
|
88 |
-
{
|
89 |
-
"epoch": 5.033557046979865,
|
90 |
-
"grad_norm": 0.0,
|
91 |
-
"learning_rate": 5.051194539249147e-05,
|
92 |
-
"loss": 0.0,
|
93 |
-
"step": 6000
|
94 |
-
},
|
95 |
-
{
|
96 |
-
"epoch": 5.453020134228188,
|
97 |
-
"grad_norm": 0.0,
|
98 |
-
"learning_rate": 4.6245733788395906e-05,
|
99 |
-
"loss": 0.0,
|
100 |
-
"step": 6500
|
101 |
-
},
|
102 |
-
{
|
103 |
-
"epoch": 5.87248322147651,
|
104 |
-
"grad_norm": 0.0,
|
105 |
-
"learning_rate": 4.197952218430034e-05,
|
106 |
-
"loss": 0.0,
|
107 |
-
"step": 7000
|
108 |
-
},
|
109 |
-
{
|
110 |
-
"epoch": 6.291946308724833,
|
111 |
-
"grad_norm": 0.0,
|
112 |
-
"learning_rate": 3.771331058020478e-05,
|
113 |
-
"loss": 0.0,
|
114 |
-
"step": 7500
|
115 |
-
},
|
116 |
-
{
|
117 |
-
"epoch": 6.7114093959731544,
|
118 |
-
"grad_norm": 0.0,
|
119 |
-
"learning_rate": 3.3447098976109216e-05,
|
120 |
-
"loss": 0.0,
|
121 |
-
"step": 8000
|
122 |
-
},
|
123 |
-
{
|
124 |
-
"epoch": 7.130872483221476,
|
125 |
-
"grad_norm": 0.0,
|
126 |
-
"learning_rate": 2.9180887372013653e-05,
|
127 |
-
"loss": 0.0,
|
128 |
-
"step": 8500
|
129 |
-
},
|
130 |
-
{
|
131 |
-
"epoch": 7.550335570469799,
|
132 |
-
"grad_norm": 0.0,
|
133 |
-
"learning_rate": 2.491467576791809e-05,
|
134 |
-
"loss": 0.0,
|
135 |
-
"step": 9000
|
136 |
-
},
|
137 |
-
{
|
138 |
-
"epoch": 7.969798657718121,
|
139 |
-
"grad_norm": 0.0,
|
140 |
-
"learning_rate": 2.0648464163822527e-05,
|
141 |
-
"loss": 0.0,
|
142 |
-
"step": 9500
|
143 |
-
},
|
144 |
-
{
|
145 |
-
"epoch": 8.389261744966444,
|
146 |
-
"grad_norm": 0.0,
|
147 |
-
"learning_rate": 1.6382252559726964e-05,
|
148 |
-
"loss": 0.0,
|
149 |
-
"step": 10000
|
150 |
-
},
|
151 |
-
{
|
152 |
-
"epoch": 8.808724832214764,
|
153 |
-
"grad_norm": 0.0,
|
154 |
-
"learning_rate": 1.21160409556314e-05,
|
155 |
-
"loss": 0.0,
|
156 |
-
"step": 10500
|
157 |
-
},
|
158 |
-
{
|
159 |
-
"epoch": 9.228187919463087,
|
160 |
-
"grad_norm": 0.0,
|
161 |
-
"learning_rate": 7.849829351535837e-06,
|
162 |
-
"loss": 0.0,
|
163 |
-
"step": 11000
|
164 |
-
},
|
165 |
-
{
|
166 |
-
"epoch": 9.64765100671141,
|
167 |
-
"grad_norm": 0.0,
|
168 |
-
"learning_rate": 3.583617747440273e-06,
|
169 |
-
"loss": 0.0,
|
170 |
-
"step": 11500
|
171 |
-
},
|
172 |
-
{
|
173 |
-
"epoch": 10.0,
|
174 |
-
"step": 11920,
|
175 |
"total_flos": 0.0,
|
176 |
"train_loss": 0.0,
|
177 |
-
"train_runtime":
|
178 |
-
"train_samples_per_second": 11.
|
179 |
-
"train_steps_per_second": 0.
|
180 |
}
|
181 |
],
|
182 |
"logging_steps": 500,
|
183 |
-
"max_steps":
|
184 |
"num_input_tokens_seen": 0,
|
185 |
-
"num_train_epochs":
|
186 |
"save_steps": 500,
|
187 |
"stateful_callbacks": {
|
188 |
"TrainerControl": {
|
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
"eval_steps": 500.0,
|
6 |
+
"global_step": 1192,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
|
|
11 |
{
|
12 |
"epoch": 0.41946308724832215,
|
13 |
"grad_norm": 0.0,
|
14 |
+
"learning_rate": 6.975806451612904e-05,
|
15 |
"loss": 0.0,
|
16 |
"step": 500
|
17 |
},
|
18 |
{
|
19 |
"epoch": 0.8389261744966443,
|
20 |
"grad_norm": 0.0,
|
21 |
+
"learning_rate": 1.935483870967742e-05,
|
22 |
"loss": 0.0,
|
23 |
"step": 1000
|
24 |
},
|
25 |
{
|
26 |
+
"epoch": 1.0,
|
27 |
+
"step": 1192,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
"total_flos": 0.0,
|
29 |
"train_loss": 0.0,
|
30 |
+
"train_runtime": 3226.4538,
|
31 |
+
"train_samples_per_second": 11.815,
|
32 |
+
"train_steps_per_second": 0.369
|
33 |
}
|
34 |
],
|
35 |
"logging_steps": 500,
|
36 |
+
"max_steps": 1192,
|
37 |
"num_input_tokens_seen": 0,
|
38 |
+
"num_train_epochs": 1,
|
39 |
"save_steps": 500,
|
40 |
"stateful_callbacks": {
|
41 |
"TrainerControl": {
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5368
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c991884a7cddc5bd76499ee0cb5817dde4dcac81e368d0383c63155c0b7af023
|
3 |
size 5368
|
vocab.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|