--- license: mit base_model: MoritzLaurer/bge-m3-zeroshot-v2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: nli-finetuning-laurer-immigration-classification results: [] --- # nli-finetuning-laurer-immigration-classification This model is a fine-tuned version of [MoritzLaurer/bge-m3-zeroshot-v2.0](https://huggingface.co/MoritzLaurer/bge-m3-zeroshot-v2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5578 - Accuracy: 0.9032 - F1 Macro: 0.8969 - Accuracy Balanced: 0.8913 - F1 Micro: 0.9032 - Precision Macro: 0.9048 - Recall Macro: 0.8913 - Precision Micro: 0.9032 - Recall Micro: 0.9032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 80 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.25 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Accuracy Balanced | F1 Micro | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | No log | 1.0 | 151 | 0.3342 | 0.8763 | 0.8679 | 0.8619 | 0.8763 | 0.8769 | 0.8619 | 0.8763 | 0.8763 | | No log | 2.0 | 302 | 0.4733 | 0.8710 | 0.8680 | 0.8793 | 0.8710 | 0.8644 | 0.8793 | 0.8710 | 0.8710 | | No log | 3.0 | 453 | 0.5168 | 0.8978 | 0.8895 | 0.8796 | 0.8978 | 0.9073 | 0.8796 | 0.8978 | 0.8978 | | 0.4084 | 4.0 | 604 | 0.5300 | 0.8871 | 0.8813 | 0.8804 | 0.8871 | 0.8823 | 0.8804 | 0.8871 | 0.8871 | | 0.4084 | 5.0 | 755 | 0.5578 | 0.9032 | 0.8969 | 0.8913 | 0.9032 | 0.9048 | 0.8913 | 0.9032 | 0.9032 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.5.0+cu121 - Datasets 2.14.7 - Tokenizers 0.13.3