--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - balbus-classifier metrics: - accuracy model-index: - name: whisper-medium-ft-balbus results: - task: name: Audio Classification type: audio-classification dataset: name: Balbus dataset type: balbus-classifier metrics: - name: Accuracy type: accuracy value: 0.465 --- # whisper-medium-ft-balbus This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Balbus dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.7451 - Accuracy: 0.465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 450 | 0.6979 | 0.535 | | 4.2819 | 2.0 | 900 | 1.1246 | 0.465 | | 0.8774 | 3.0 | 1350 | 0.7451 | 0.465 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.19.1