File size: 3,619 Bytes
7498aad 2b3b767 7498aad 2b3b767 7498aad 2b3b767 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: UniDepth
tags:
- monocular-metric-depth-estimation
- pytorch_model_hub_mixin
- model_hub_mixin
- depth-estimation
repo_url: https://github.com/lpiccinelli-eth/UniDepth
license: cc-by-nc-4.0
---
[](https://arxiv.org/abs/2502.20110)
[](https://arxiv.org/abs/2403.18913)
[](https://lpiccinelli-eth.github.io/pub/unidepth/)
# UniDepthV2: Universal Monocular Metric Depth Estimation Made Simpler
[-orange)](https://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_prediction)
[](https://paperswithcode.com/sota/monocular-depth-estimation-on-nyu-depth-v2?p=unidepthv2-universal-monocular-metric-depth)
[](https://paperswithcode.com/sota/monocular-depth-estimation-on-kitti-eigen?p=unidepthv2-universal-monocular-metric-depth)

> [**UniDepthV2: Universal Monocular Metric Depth Estimation Made Simpler**](https://arxiv.org/abs/2403.18913),
> Luigi Piccinelli, Christos Sakaridis, Yung-Hsu Yang, Mattia Segu, Siyuan Li, Wim Abbeloos, Luc Van Gool,
> under submission,
> *Paper at [arXiv 2502.20110](https://arxiv.org/abs/2502.20110)*
# UniDepth: Universal Monocular Metric Depth Estimation
[-orange)](https://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_prediction)
[](https://paperswithcode.com/sota/monocular-depth-estimation-on-nyu-depth-v2?p=unidepth-universal-monocular-metric-depth)
[](https://paperswithcode.com/sota/monocular-depth-estimation-on-kitti-eigen?p=unidepth-universal-monocular-metric-depth)

> [**UniDepth: Universal Monocular Metric Depth Estimation**](https://arxiv.org/abs/2403.18913),
> Luigi Piccinelli, Yung-Hsu Yang, Christos Sakaridis, Mattia Segu, Siyuan Li, Luc Van Gool, Fisher Yu,
> CVPR 2024,
> *Paper at [arXiv 2403.18913](https://arxiv.org/pdf/2403.18913.pdf)*
## News and ToDo
- [ ] HuggingFace/Gradio demo.
- [x] `28.02.2025`: Release UniDepthV2.
- [x] `15.10.2024`: Release training code.
- [x] `02.04.2024`: Release UniDepth as python package.
- [x] `01.04.2024`: Inference code and V1 models are released.
- [x] `26.02.2024`: UniDepth is accepted at CVPR 2024! (Highlight :star:)
## Zero-Shot Visualization
### YouTube (The Office - Parkour)
<p align="center">
<img src="assets/docs/theoffice.gif" alt="animated" />
</p>
### NuScenes (stitched cameras)
<p align="center">
<img src="assets/docs/nuscenes_surround.gif" alt="animated" />
</p>
## Installation
... (rest of the content remains the same) |