File size: 2,424 Bytes
4f8bc8c f4169d1 4f8bc8c f4169d1 4f8bc8c f4169d1 4f8bc8c f4169d1 4f8bc8c f4169d1 4f8bc8c f4169d1 4f8bc8c f4169d1 4f8bc8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
language:
- en
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small English
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 en
type: mozilla-foundation/common_voice_11_0
config: en
split: test
args: en
metrics:
- name: Wer
type: wer
value: 13.038588824984737
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small English
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 en dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3266
- Wer: 13.0386
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.1529 | 0.1 | 1000 | 0.4381 | 17.7766 |
| 0.2372 | 0.2 | 2000 | 0.3988 | 15.9201 |
| 0.1706 | 0.3 | 3000 | 0.3841 | 15.5069 |
| 0.2781 | 0.4 | 4000 | 0.3697 | 14.8122 |
| 0.2167 | 0.5 | 5000 | 0.3576 | 14.2563 |
| 0.3609 | 0.6 | 6000 | 0.4041 | 18.0670 |
| 0.2455 | 0.7 | 7000 | 0.3372 | 13.4813 |
| 0.2502 | 0.8 | 8000 | 0.3393 | 13.5810 |
| 0.2564 | 0.9 | 9000 | 0.3303 | 13.1041 |
| 0.2394 | 1.0 | 10000 | 0.3266 | 13.0386 |
### Framework versions
- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.11.1.dev0
- Tokenizers 0.13.2
|