--- language: - ru license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Russian results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 ru type: mozilla-foundation/common_voice_11_0 config: ru split: test args: ru metrics: - type: wer value: 7.562437929892964 name: Wer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: ru_ru split: test metrics: - type: wer value: 10.92 name: WER --- # Whisper Medium Russian This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 ru dataset. It achieves the following results on the evaluation set: - Loss: 0.2253 - Wer: 7.5624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.1578 | 0.1 | 1000 | 0.1662 | 8.8290 | | 0.045 | 1.08 | 2000 | 0.1748 | 8.9148 | | 0.0176 | 2.06 | 3000 | 0.1889 | 8.7848 | | 0.0104 | 3.04 | 4000 | 0.1922 | 8.4354 | | 0.0051 | 4.02 | 5000 | 0.2034 | 8.1865 | | 0.0047 | 4.12 | 6000 | 0.2012 | 8.0455 | | 0.0018 | 5.1 | 7000 | 0.2117 | 7.6237 | | 0.0004 | 6.08 | 8000 | 0.2177 | 7.6078 | | 0.0003 | 7.06 | 9000 | 0.2244 | 7.6262 | | 0.0002 | 8.04 | 10000 | 0.2253 | 7.5624 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.11.1.dev0 - Tokenizers 0.13.2