asahi417 commited on
Commit
a9d0d95
·
1 Parent(s): e71fc43

commit files to HF hub

Browse files
README.md ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: cc-by-4.0
4
+ metrics:
5
+ - bleu4
6
+ - meteor
7
+ - rouge-l
8
+ - bertscore
9
+ - moverscore
10
+ language: en
11
+ datasets:
12
+ - lmqg/qg_zhquad
13
+ pipeline_tag: text2text-generation
14
+ tags:
15
+ - answer extraction
16
+ widget:
17
+ - text: "<hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress."
18
+ example_title: "Answering Extraction Example 1"
19
+ - text: "Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress. <hl>"
20
+ example_title: "Answering Extraction Example 2"
21
+ model-index:
22
+ - name: lmqg/mt5-small-zhquad-ae
23
+ results:
24
+ - task:
25
+ name: Text2text Generation
26
+ type: text2text-generation
27
+ dataset:
28
+ name: lmqg/qg_zhquad
29
+ type: default
30
+ args: default
31
+ metrics:
32
+ - name: BLEU4 (Answer Extraction)
33
+ type: bleu4_answer_extraction
34
+ value: 82.12
35
+ - name: ROUGE-L (Answer Extraction)
36
+ type: rouge_l_answer_extraction
37
+ value: 95.7
38
+ - name: METEOR (Answer Extraction)
39
+ type: meteor_answer_extraction
40
+ value: 70.98
41
+ - name: BERTScore (Answer Extraction)
42
+ type: bertscore_answer_extraction
43
+ value: 99.78
44
+ - name: MoverScore (Answer Extraction)
45
+ type: moverscore_answer_extraction
46
+ value: 98.8
47
+ - name: AnswerF1Score (Answer Extraction)
48
+ type: answer_f1_score__answer_extraction
49
+ value: 95.17
50
+ - name: AnswerExactMatch (Answer Extraction)
51
+ type: answer_exact_match_answer_extraction
52
+ value: 95.08
53
+ ---
54
+
55
+ # Model Card of `lmqg/mt5-small-zhquad-ae`
56
+ This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for answer extraction on the [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
57
+
58
+
59
+ ### Overview
60
+ - **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)
61
+ - **Language:** en
62
+ - **Training data:** [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) (default)
63
+ - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
64
+ - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
65
+ - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
66
+
67
+ ### Usage
68
+ - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
69
+ ```python
70
+ from lmqg import TransformersQG
71
+
72
+ # initialize model
73
+ model = TransformersQG(language="en", model="lmqg/mt5-small-zhquad-ae")
74
+
75
+ # model prediction
76
+ answers = model.generate_a("William Turner was an English painter who specialised in watercolour landscapes")
77
+
78
+ ```
79
+
80
+ - With `transformers`
81
+ ```python
82
+ from transformers import pipeline
83
+
84
+ pipe = pipeline("text2text-generation", "lmqg/mt5-small-zhquad-ae")
85
+ output = pipe("<hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress.")
86
+
87
+ ```
88
+
89
+ ## Evaluation
90
+
91
+
92
+ - ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-zhquad-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_zhquad.default.json)
93
+
94
+ | | Score | Type | Dataset |
95
+ |:-----------------|--------:|:--------|:-----------------------------------------------------------------|
96
+ | AnswerExactMatch | 95.08 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
97
+ | AnswerF1Score | 95.17 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
98
+ | BERTScore | 99.78 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
99
+ | Bleu_1 | 92.07 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
100
+ | Bleu_2 | 88.98 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
101
+ | Bleu_3 | 85.68 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
102
+ | Bleu_4 | 82.12 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
103
+ | METEOR | 70.98 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
104
+ | MoverScore | 98.8 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
105
+ | ROUGE_L | 95.7 | default | [lmqg/qg_zhquad](https://huggingface.co/datasets/lmqg/qg_zhquad) |
106
+
107
+
108
+
109
+ ## Training hyperparameters
110
+
111
+ The following hyperparameters were used during fine-tuning:
112
+ - dataset_path: lmqg/qg_zhquad
113
+ - dataset_name: default
114
+ - input_types: ['paragraph_sentence']
115
+ - output_types: ['answer']
116
+ - prefix_types: None
117
+ - model: google/mt5-small
118
+ - max_length: 512
119
+ - max_length_output: 32
120
+ - epoch: 4
121
+ - batch: 16
122
+ - lr: 0.0005
123
+ - fp16: False
124
+ - random_seed: 1
125
+ - gradient_accumulation_steps: 4
126
+ - label_smoothing: 0.15
127
+
128
+ The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-zhquad-ae/raw/main/trainer_config.json).
129
+
130
+ ## Citation
131
+ ```
132
+ @inproceedings{ushio-etal-2022-generative,
133
+ title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
134
+ author = "Ushio, Asahi and
135
+ Alva-Manchego, Fernando and
136
+ Camacho-Collados, Jose",
137
+ booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
138
+ month = dec,
139
+ year = "2022",
140
+ address = "Abu Dhabi, U.A.E.",
141
+ publisher = "Association for Computational Linguistics",
142
+ }
143
+
144
+ ```
eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_zhquad.default.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"validation": {"Bleu_1": 0.912896580140053, "Bleu_2": 0.8804701193017836, "Bleu_3": 0.8467998054794517, "Bleu_4": 0.8113598119994743, "METEOR": 0.7055339995152433, "ROUGE_L": 0.950296585648165, "BERTScore": 0.9965133804569203, "MoverScore": 0.9843137525598916, "AnswerF1Score": 94.37559263627745, "AnswerExactMatch": 94.22049538610976}, "test": {"Bleu_1": 0.9206505036707819, "Bleu_2": 0.889804563393523, "Bleu_3": 0.85680409086929, "Bleu_4": 0.8212311960361648, "METEOR": 0.7097847456378461, "ROUGE_L": 0.9569663634480098, "BERTScore": 0.9977623556187397, "MoverScore": 0.9879534864147735, "AnswerF1Score": 95.17148870232893, "AnswerExactMatch": 95.082564351627}}
eval/samples.test.hyp.paragraph_sentence.answer.lmqg_qg_zhquad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph_sentence.answer.lmqg_qg_zhquad.default.txt ADDED
The diff for this file is too large to render. See raw diff