asahi417 commited on
Commit
4e9d431
·
1 Parent(s): 3cf652e

commit files to HF hub

Browse files
README.md ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: cc-by-4.0
4
+ metrics:
5
+ - bleu4
6
+ - meteor
7
+ - rouge-l
8
+ - bertscore
9
+ - moverscore
10
+ language: zh
11
+ datasets:
12
+ - lmqg/qag_zhquad
13
+ pipeline_tag: text2text-generation
14
+ tags:
15
+ - questions and answers generation
16
+ widget:
17
+ - text: "南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。"
18
+ example_title: "Questions & Answers Generation Example 1"
19
+ model-index:
20
+ - name: lmqg/mt5-base-zhquad-qag
21
+ results:
22
+ - task:
23
+ name: Text2text Generation
24
+ type: text2text-generation
25
+ dataset:
26
+ name: lmqg/qag_zhquad
27
+ type: default
28
+ args: default
29
+ metrics:
30
+ - name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
31
+ type: qa_aligned_f1_score_bertscore_question_answer_generation
32
+ value: 73.57
33
+ - name: QAAlignedRecall-BERTScore (Question & Answer Generation)
34
+ type: qa_aligned_recall_bertscore_question_answer_generation
35
+ value: 74.12
36
+ - name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
37
+ type: qa_aligned_precision_bertscore_question_answer_generation
38
+ value: 73.07
39
+ - name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
40
+ type: qa_aligned_f1_score_moverscore_question_answer_generation
41
+ value: 49.76
42
+ - name: QAAlignedRecall-MoverScore (Question & Answer Generation)
43
+ type: qa_aligned_recall_moverscore_question_answer_generation
44
+ value: 49.92
45
+ - name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
46
+ type: qa_aligned_precision_moverscore_question_answer_generation
47
+ value: 49.62
48
+ ---
49
+
50
+ # Model Card of `lmqg/mt5-base-zhquad-qag`
51
+ This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for question & answer pair generation task on the [lmqg/qag_zhquad](https://huggingface.co/datasets/lmqg/qag_zhquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
52
+
53
+
54
+ ### Overview
55
+ - **Language model:** [google/mt5-base](https://huggingface.co/google/mt5-base)
56
+ - **Language:** zh
57
+ - **Training data:** [lmqg/qag_zhquad](https://huggingface.co/datasets/lmqg/qag_zhquad) (default)
58
+ - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
59
+ - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
60
+ - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
61
+
62
+ ### Usage
63
+ - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
64
+ ```python
65
+ from lmqg import TransformersQG
66
+
67
+ # initialize model
68
+ model = TransformersQG(language="zh", model="lmqg/mt5-base-zhquad-qag")
69
+
70
+ # model prediction
71
+ question_answer_pairs = model.generate_qa("南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近南安普敦中央火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")
72
+
73
+ ```
74
+
75
+ - With `transformers`
76
+ ```python
77
+ from transformers import pipeline
78
+
79
+ pipe = pipeline("text2text-generation", "lmqg/mt5-base-zhquad-qag")
80
+ output = pipe("南安普敦的警察服务由汉普郡警察提供。南安普敦行动的主要基地是一座新的八层专用建筑,造价3000万英镑。该建筑位于南路,2011年启用,靠近 南安普敦中央 火车站。此前,南安普顿市中心的行动位于市民中心西翼,但由于设施老化,加上计划在旧警察局和地方法院建造一座新博物馆,因此必须搬迁。在Portswood、Banister Park、Hille和Shirley还有其他警察局,在南安普顿中央火车站还有一个英国交通警察局。")
81
+
82
+ ```
83
+
84
+ ## Evaluation
85
+
86
+
87
+ - ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-zhquad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_zhquad.default.json)
88
+
89
+ | | Score | Type | Dataset |
90
+ |:--------------------------------|--------:|:--------|:-------------------------------------------------------------------|
91
+ | QAAlignedF1Score (BERTScore) | 73.57 | default | [lmqg/qag_zhquad](https://huggingface.co/datasets/lmqg/qag_zhquad) |
92
+ | QAAlignedF1Score (MoverScore) | 49.76 | default | [lmqg/qag_zhquad](https://huggingface.co/datasets/lmqg/qag_zhquad) |
93
+ | QAAlignedPrecision (BERTScore) | 73.07 | default | [lmqg/qag_zhquad](https://huggingface.co/datasets/lmqg/qag_zhquad) |
94
+ | QAAlignedPrecision (MoverScore) | 49.62 | default | [lmqg/qag_zhquad](https://huggingface.co/datasets/lmqg/qag_zhquad) |
95
+ | QAAlignedRecall (BERTScore) | 74.12 | default | [lmqg/qag_zhquad](https://huggingface.co/datasets/lmqg/qag_zhquad) |
96
+ | QAAlignedRecall (MoverScore) | 49.92 | default | [lmqg/qag_zhquad](https://huggingface.co/datasets/lmqg/qag_zhquad) |
97
+
98
+
99
+
100
+ ## Training hyperparameters
101
+
102
+ The following hyperparameters were used during fine-tuning:
103
+ - dataset_path: lmqg/qag_zhquad
104
+ - dataset_name: default
105
+ - input_types: ['paragraph']
106
+ - output_types: ['questions_answers']
107
+ - prefix_types: None
108
+ - model: google/mt5-base
109
+ - max_length: 512
110
+ - max_length_output: 256
111
+ - epoch: 4
112
+ - batch: 2
113
+ - lr: 0.001
114
+ - fp16: False
115
+ - random_seed: 1
116
+ - gradient_accumulation_steps: 32
117
+ - label_smoothing: 0.15
118
+
119
+ The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-zhquad-qag/raw/main/trainer_config.json).
120
+
121
+ ## Citation
122
+ ```
123
+ @inproceedings{ushio-etal-2022-generative,
124
+ title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
125
+ author = "Ushio, Asahi and
126
+ Alva-Manchego, Fernando and
127
+ Camacho-Collados, Jose",
128
+ booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
129
+ month = dec,
130
+ year = "2022",
131
+ address = "Abu Dhabi, U.A.E.",
132
+ publisher = "Association for Computational Linguistics",
133
+ }
134
+
135
+ ```
eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_zhquad.default.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"validation": {"Bleu_1": 0.2077453790649394, "Bleu_2": 0.15669616212849166, "Bleu_3": 0.11329327069798292, "Bleu_4": 0.0675205628662687, "METEOR": 0.13149550299405027, "ROUGE_L": 0.2609240515597465, "BERTScore": 0.7150794306427541, "MoverScore": 0.49850276047443437, "QAAlignedF1Score (BERTScore)": 0.7350379663139712, "QAAlignedRecall (BERTScore)": 0.7253406724703527, "QAAlignedPrecision (BERTScore)": 0.7460203931739798, "QAAlignedF1Score (MoverScore)": 0.49478330796740533, "QAAlignedRecall (MoverScore)": 0.48941958475894903, "QAAlignedPrecision (MoverScore)": 0.5005154693716379}, "test": {"Bleu_1": 0.08653450389859453, "Bleu_2": 0.06361653603763276, "Bleu_3": 0.04326443681415462, "Bleu_4": 0.024136296807001266, "METEOR": 0.10530923349771895, "ROUGE_L": 0.19016124779262342, "BERTScore": 0.632117692622639, "MoverScore": 0.4921711252598822, "QAAlignedF1Score (BERTScore)": 0.7356638345459832, "QAAlignedRecall (BERTScore)": 0.7411721341960391, "QAAlignedPrecision (BERTScore)": 0.7307381935071808, "QAAlignedF1Score (MoverScore)": 0.4976474798290538, "QAAlignedRecall (MoverScore)": 0.4992147354755327, "QAAlignedPrecision (MoverScore)": 0.49618864901132487}}
eval/samples.test.hyp.paragraph.questions_answers.lmqg_qag_zhquad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qag_zhquad.default.txt ADDED
The diff for this file is too large to render. See raw diff
 
trainer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"dataset_path": "lmqg/qag_zhquad", "dataset_name": "default", "input_types": ["paragraph"], "output_types": ["questions_answers"], "prefix_types": null, "model": "google/mt5-base", "max_length": 512, "max_length_output": 256, "epoch": 4, "batch": 2, "lr": 0.001, "fp16": false, "random_seed": 1, "gradient_accumulation_steps": 32, "label_smoothing": 0.15}