Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- added_tokens.json +16 -0
- chat_template.json +3 -0
- checkpoint-241/added_tokens.json +16 -0
- checkpoint-241/chat_template.json +3 -0
- checkpoint-241/config.json +48 -0
- checkpoint-241/generation_config.json +15 -0
- checkpoint-241/global_step241/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-241/global_step241/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-241/global_step241/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-241/global_step241/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-241/global_step241/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-241/global_step241/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-241/global_step241/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-241/global_step241/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-241/global_step241/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-241/global_step241/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-241/global_step241/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-241/global_step241/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- checkpoint-241/global_step241/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- checkpoint-241/global_step241/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- checkpoint-241/global_step241/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- checkpoint-241/global_step241/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- checkpoint-241/latest +1 -0
- checkpoint-241/merges.txt +0 -0
- checkpoint-241/model-00001-of-00004.safetensors +3 -0
- checkpoint-241/model-00002-of-00004.safetensors +3 -0
- checkpoint-241/model-00003-of-00004.safetensors +3 -0
- checkpoint-241/model-00004-of-00004.safetensors +3 -0
- checkpoint-241/model.safetensors.index.json +737 -0
- checkpoint-241/preprocessor_config.json +29 -0
- checkpoint-241/rng_state_0.pth +3 -0
- checkpoint-241/rng_state_1.pth +3 -0
- checkpoint-241/rng_state_2.pth +3 -0
- checkpoint-241/rng_state_3.pth +3 -0
- checkpoint-241/rng_state_4.pth +3 -0
- checkpoint-241/rng_state_5.pth +3 -0
- checkpoint-241/rng_state_6.pth +3 -0
- checkpoint-241/rng_state_7.pth +3 -0
- checkpoint-241/scheduler.pt +3 -0
- checkpoint-241/special_tokens_map.json +31 -0
- checkpoint-241/tokenizer.json +3 -0
- checkpoint-241/tokenizer_config.json +145 -0
- checkpoint-241/trainer_state.json +3166 -0
- checkpoint-241/training_args.bin +3 -0
- checkpoint-241/vocab.json +0 -0
- checkpoint-241/zero_to_fp32.py +674 -0
- config.json +48 -0
- generation_config.json +15 -0
- merges.txt +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
checkpoint-241/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|box_end|>": 151649,
|
3 |
+
"<|box_start|>": 151648,
|
4 |
+
"<|endoftext|>": 151643,
|
5 |
+
"<|im_end|>": 151645,
|
6 |
+
"<|im_start|>": 151644,
|
7 |
+
"<|image_pad|>": 151655,
|
8 |
+
"<|object_ref_end|>": 151647,
|
9 |
+
"<|object_ref_start|>": 151646,
|
10 |
+
"<|quad_end|>": 151651,
|
11 |
+
"<|quad_start|>": 151650,
|
12 |
+
"<|video_pad|>": 151656,
|
13 |
+
"<|vision_end|>": 151653,
|
14 |
+
"<|vision_pad|>": 151654,
|
15 |
+
"<|vision_start|>": 151652
|
16 |
+
}
|
chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
3 |
+
}
|
checkpoint-241/added_tokens.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|box_end|>": 151649,
|
3 |
+
"<|box_start|>": 151648,
|
4 |
+
"<|endoftext|>": 151643,
|
5 |
+
"<|im_end|>": 151645,
|
6 |
+
"<|im_start|>": 151644,
|
7 |
+
"<|image_pad|>": 151655,
|
8 |
+
"<|object_ref_end|>": 151647,
|
9 |
+
"<|object_ref_start|>": 151646,
|
10 |
+
"<|quad_end|>": 151651,
|
11 |
+
"<|quad_start|>": 151650,
|
12 |
+
"<|video_pad|>": 151656,
|
13 |
+
"<|vision_end|>": 151653,
|
14 |
+
"<|vision_pad|>": 151654,
|
15 |
+
"<|vision_start|>": 151652
|
16 |
+
}
|
checkpoint-241/chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
3 |
+
}
|
checkpoint-241/config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2-VL-7B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2VLForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"image_token_id": 151655,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 18944,
|
14 |
+
"max_position_embeddings": 32768,
|
15 |
+
"max_window_layers": 28,
|
16 |
+
"model_type": "qwen2_vl",
|
17 |
+
"num_attention_heads": 28,
|
18 |
+
"num_hidden_layers": 28,
|
19 |
+
"num_key_value_heads": 4,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": {
|
22 |
+
"mrope_section": [
|
23 |
+
16,
|
24 |
+
24,
|
25 |
+
24
|
26 |
+
],
|
27 |
+
"rope_type": "default",
|
28 |
+
"type": "default"
|
29 |
+
},
|
30 |
+
"rope_theta": 1000000.0,
|
31 |
+
"sliding_window": 32768,
|
32 |
+
"tie_word_embeddings": false,
|
33 |
+
"torch_dtype": "bfloat16",
|
34 |
+
"transformers_version": "4.49.0.dev0",
|
35 |
+
"use_cache": false,
|
36 |
+
"use_sliding_window": false,
|
37 |
+
"video_token_id": 151656,
|
38 |
+
"vision_config": {
|
39 |
+
"in_chans": 3,
|
40 |
+
"model_type": "qwen2_vl",
|
41 |
+
"spatial_patch_size": 14,
|
42 |
+
"torch_dtype": "float32"
|
43 |
+
},
|
44 |
+
"vision_end_token_id": 151653,
|
45 |
+
"vision_start_token_id": 151652,
|
46 |
+
"vision_token_id": 151654,
|
47 |
+
"vocab_size": 152064
|
48 |
+
}
|
checkpoint-241/generation_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_implementation": "flash_attention_2",
|
3 |
+
"bos_token_id": 151643,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": [
|
6 |
+
151645,
|
7 |
+
151643
|
8 |
+
],
|
9 |
+
"pad_token_id": 151643,
|
10 |
+
"temperature": 0.01,
|
11 |
+
"top_k": 1,
|
12 |
+
"top_p": 0.001,
|
13 |
+
"transformers_version": "4.49.0.dev0",
|
14 |
+
"use_cache": false
|
15 |
+
}
|
checkpoint-241/global_step241/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6175182be3db7670a743495676010167ea180fb95f41098b4629bb54af79eeb
|
3 |
+
size 3109271152
|
checkpoint-241/global_step241/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f52beb8430287d1bd08d036aa74020e4b1aa7d823653a125094382c863ecd24c
|
3 |
+
size 3109271152
|
checkpoint-241/global_step241/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:581a24ee5a1cc0a6361123ec5e96f4d2f597626ee4086a1c7f04cf5d4297af98
|
3 |
+
size 3109271152
|
checkpoint-241/global_step241/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b333ae27b9e7075a0e1fe82a9a868b5de6c3167736b8ff5809418567d7cbd72
|
3 |
+
size 3109271152
|
checkpoint-241/global_step241/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23dd9eae7b64c1da31902c95398f427cef0797f13e067b433e4f0c38c89bc3cb
|
3 |
+
size 3109271152
|
checkpoint-241/global_step241/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5737fd8145a3ce07926ce288d370f71f16b4da5080394217687d46f93a7bd31
|
3 |
+
size 3109271152
|
checkpoint-241/global_step241/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:412441d786bf76fd1db14eb8621b6498816f059d0e6eeba9652540371f4f4490
|
3 |
+
size 3109271152
|
checkpoint-241/global_step241/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86d0e08704784160648ecc3c23f84bbd436cd20a23c4c34d4ff3d2a8e1deccb9
|
3 |
+
size 3109271152
|
checkpoint-241/global_step241/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84d1d91fe2b33b0971ca6c13e8d5495c3db3593617f5be3cb6cda7d32a624231
|
3 |
+
size 345056
|
checkpoint-241/global_step241/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35fd53e6b9cc510ee72f496b33131276b20ef67270d958eaa5e3a5210f412520
|
3 |
+
size 345056
|
checkpoint-241/global_step241/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:acdb3da4b70fcce7404470e120ad0d4f44b39c3ba2e31b3ca75c62edebd5ef32
|
3 |
+
size 345056
|
checkpoint-241/global_step241/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16effa550ccb979230cf8966b46c566412938839228f102552b375da75f2d703
|
3 |
+
size 345056
|
checkpoint-241/global_step241/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d75f9a3138f2cc46ca3e0c7e76348590882a325908ef095b2c3ea67ecfbdf1a6
|
3 |
+
size 345056
|
checkpoint-241/global_step241/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dec730d4aa3558036407592b675673a4443fcc0936fc8a34a9246797b27e4c5
|
3 |
+
size 345056
|
checkpoint-241/global_step241/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9dd69758c3b17c6f1198f6313d770ae942f8343205511f18e3eee510e793089
|
3 |
+
size 345056
|
checkpoint-241/global_step241/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a81293956ad1a4d39670141ed1758953d10c3387978343a4a14fabeae52bde9
|
3 |
+
size 345056
|
checkpoint-241/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step241
|
checkpoint-241/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-241/model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18a2c8cf820035dc21186d653c096ca29364d2b91ce00a1260c5a7f53b75f4b1
|
3 |
+
size 4966659944
|
checkpoint-241/model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c5862c721a0d556f5ba37db50aeed7a83228601144d832958b1c86fea9dadd3
|
3 |
+
size 4991495816
|
checkpoint-241/model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ee35930f0e906c339f73759a2544adc0abb435ca8c11685da0c615c2d355e95
|
3 |
+
size 4932751040
|
checkpoint-241/model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4db9563b9e5a1229fd773d02c4a06700355891f55a2038f8febd0e72d3347ea
|
3 |
+
size 1691924384
|
checkpoint-241/model.safetensors.index.json
ADDED
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16582751232
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00004-of-00004.safetensors",
|
345 |
+
"visual.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
|
346 |
+
"visual.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
|
347 |
+
"visual.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
348 |
+
"visual.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
349 |
+
"visual.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
350 |
+
"visual.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
351 |
+
"visual.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
352 |
+
"visual.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
353 |
+
"visual.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
|
354 |
+
"visual.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
|
355 |
+
"visual.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
|
356 |
+
"visual.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
|
357 |
+
"visual.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
|
358 |
+
"visual.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
|
359 |
+
"visual.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
360 |
+
"visual.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
361 |
+
"visual.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
362 |
+
"visual.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
363 |
+
"visual.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
364 |
+
"visual.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
365 |
+
"visual.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
|
366 |
+
"visual.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
|
367 |
+
"visual.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
|
368 |
+
"visual.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
|
369 |
+
"visual.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
|
370 |
+
"visual.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
|
371 |
+
"visual.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
372 |
+
"visual.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
373 |
+
"visual.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
374 |
+
"visual.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
375 |
+
"visual.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
376 |
+
"visual.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
377 |
+
"visual.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
|
378 |
+
"visual.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
|
379 |
+
"visual.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
|
380 |
+
"visual.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
|
381 |
+
"visual.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
|
382 |
+
"visual.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
|
383 |
+
"visual.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
384 |
+
"visual.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
385 |
+
"visual.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
386 |
+
"visual.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
387 |
+
"visual.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
388 |
+
"visual.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
389 |
+
"visual.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
|
390 |
+
"visual.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
|
391 |
+
"visual.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
|
392 |
+
"visual.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
|
393 |
+
"visual.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
|
394 |
+
"visual.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
|
395 |
+
"visual.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
396 |
+
"visual.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
397 |
+
"visual.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
398 |
+
"visual.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
399 |
+
"visual.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
400 |
+
"visual.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
401 |
+
"visual.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
|
402 |
+
"visual.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
|
403 |
+
"visual.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
|
404 |
+
"visual.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
|
405 |
+
"visual.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
|
406 |
+
"visual.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
|
407 |
+
"visual.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
408 |
+
"visual.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
409 |
+
"visual.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
410 |
+
"visual.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
411 |
+
"visual.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
412 |
+
"visual.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
413 |
+
"visual.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
|
414 |
+
"visual.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
|
415 |
+
"visual.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
|
416 |
+
"visual.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
|
417 |
+
"visual.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
|
418 |
+
"visual.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
|
419 |
+
"visual.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
420 |
+
"visual.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
421 |
+
"visual.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
422 |
+
"visual.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
423 |
+
"visual.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
424 |
+
"visual.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
425 |
+
"visual.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
|
426 |
+
"visual.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
|
427 |
+
"visual.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
|
428 |
+
"visual.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
|
429 |
+
"visual.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
|
430 |
+
"visual.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
|
431 |
+
"visual.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
432 |
+
"visual.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
433 |
+
"visual.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
434 |
+
"visual.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
435 |
+
"visual.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
436 |
+
"visual.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
437 |
+
"visual.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
|
438 |
+
"visual.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
|
439 |
+
"visual.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
|
440 |
+
"visual.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
|
441 |
+
"visual.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
|
442 |
+
"visual.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
|
443 |
+
"visual.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
444 |
+
"visual.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
445 |
+
"visual.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
446 |
+
"visual.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
447 |
+
"visual.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
448 |
+
"visual.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
449 |
+
"visual.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
|
450 |
+
"visual.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
|
451 |
+
"visual.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
|
452 |
+
"visual.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
|
453 |
+
"visual.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
|
454 |
+
"visual.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
|
455 |
+
"visual.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
456 |
+
"visual.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
457 |
+
"visual.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
458 |
+
"visual.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
459 |
+
"visual.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
460 |
+
"visual.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
461 |
+
"visual.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
|
462 |
+
"visual.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
|
463 |
+
"visual.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
|
464 |
+
"visual.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
|
465 |
+
"visual.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
|
466 |
+
"visual.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
|
467 |
+
"visual.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
468 |
+
"visual.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
469 |
+
"visual.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
470 |
+
"visual.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
471 |
+
"visual.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
472 |
+
"visual.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
473 |
+
"visual.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
|
474 |
+
"visual.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
|
475 |
+
"visual.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
|
476 |
+
"visual.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
|
477 |
+
"visual.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
|
478 |
+
"visual.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
|
479 |
+
"visual.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
480 |
+
"visual.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
481 |
+
"visual.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
482 |
+
"visual.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
483 |
+
"visual.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
484 |
+
"visual.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
485 |
+
"visual.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
|
486 |
+
"visual.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
|
487 |
+
"visual.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
|
488 |
+
"visual.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
|
489 |
+
"visual.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
|
490 |
+
"visual.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
|
491 |
+
"visual.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
492 |
+
"visual.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
493 |
+
"visual.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
494 |
+
"visual.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
495 |
+
"visual.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
496 |
+
"visual.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
497 |
+
"visual.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
|
498 |
+
"visual.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
|
499 |
+
"visual.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
|
500 |
+
"visual.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
|
501 |
+
"visual.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
|
502 |
+
"visual.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
|
503 |
+
"visual.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
504 |
+
"visual.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
505 |
+
"visual.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
506 |
+
"visual.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
507 |
+
"visual.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
508 |
+
"visual.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
509 |
+
"visual.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
|
510 |
+
"visual.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
|
511 |
+
"visual.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
|
512 |
+
"visual.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
|
513 |
+
"visual.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
|
514 |
+
"visual.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
|
515 |
+
"visual.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
516 |
+
"visual.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
517 |
+
"visual.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
518 |
+
"visual.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
519 |
+
"visual.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
520 |
+
"visual.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
521 |
+
"visual.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
|
522 |
+
"visual.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
|
523 |
+
"visual.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
|
524 |
+
"visual.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
|
525 |
+
"visual.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
|
526 |
+
"visual.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
|
527 |
+
"visual.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
528 |
+
"visual.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
529 |
+
"visual.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
530 |
+
"visual.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
531 |
+
"visual.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
532 |
+
"visual.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
533 |
+
"visual.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
|
534 |
+
"visual.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
|
535 |
+
"visual.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
|
536 |
+
"visual.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
|
537 |
+
"visual.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
|
538 |
+
"visual.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
|
539 |
+
"visual.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
540 |
+
"visual.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
541 |
+
"visual.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
542 |
+
"visual.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
543 |
+
"visual.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
544 |
+
"visual.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
545 |
+
"visual.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
|
546 |
+
"visual.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
|
547 |
+
"visual.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
|
548 |
+
"visual.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
|
549 |
+
"visual.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
|
550 |
+
"visual.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
|
551 |
+
"visual.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
552 |
+
"visual.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
553 |
+
"visual.blocks.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
554 |
+
"visual.blocks.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
555 |
+
"visual.blocks.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
556 |
+
"visual.blocks.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
557 |
+
"visual.blocks.24.norm1.bias": "model-00001-of-00004.safetensors",
|
558 |
+
"visual.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
|
559 |
+
"visual.blocks.24.norm2.bias": "model-00001-of-00004.safetensors",
|
560 |
+
"visual.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
|
561 |
+
"visual.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
|
562 |
+
"visual.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
|
563 |
+
"visual.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
564 |
+
"visual.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
565 |
+
"visual.blocks.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
566 |
+
"visual.blocks.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
567 |
+
"visual.blocks.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
568 |
+
"visual.blocks.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
569 |
+
"visual.blocks.25.norm1.bias": "model-00001-of-00004.safetensors",
|
570 |
+
"visual.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
|
571 |
+
"visual.blocks.25.norm2.bias": "model-00001-of-00004.safetensors",
|
572 |
+
"visual.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
|
573 |
+
"visual.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
|
574 |
+
"visual.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
|
575 |
+
"visual.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
576 |
+
"visual.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
577 |
+
"visual.blocks.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
578 |
+
"visual.blocks.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
579 |
+
"visual.blocks.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
580 |
+
"visual.blocks.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
581 |
+
"visual.blocks.26.norm1.bias": "model-00001-of-00004.safetensors",
|
582 |
+
"visual.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
|
583 |
+
"visual.blocks.26.norm2.bias": "model-00001-of-00004.safetensors",
|
584 |
+
"visual.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
|
585 |
+
"visual.blocks.27.attn.proj.bias": "model-00001-of-00004.safetensors",
|
586 |
+
"visual.blocks.27.attn.proj.weight": "model-00001-of-00004.safetensors",
|
587 |
+
"visual.blocks.27.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
588 |
+
"visual.blocks.27.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
589 |
+
"visual.blocks.27.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
590 |
+
"visual.blocks.27.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
591 |
+
"visual.blocks.27.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
592 |
+
"visual.blocks.27.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
593 |
+
"visual.blocks.27.norm1.bias": "model-00001-of-00004.safetensors",
|
594 |
+
"visual.blocks.27.norm1.weight": "model-00001-of-00004.safetensors",
|
595 |
+
"visual.blocks.27.norm2.bias": "model-00001-of-00004.safetensors",
|
596 |
+
"visual.blocks.27.norm2.weight": "model-00001-of-00004.safetensors",
|
597 |
+
"visual.blocks.28.attn.proj.bias": "model-00001-of-00004.safetensors",
|
598 |
+
"visual.blocks.28.attn.proj.weight": "model-00001-of-00004.safetensors",
|
599 |
+
"visual.blocks.28.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
600 |
+
"visual.blocks.28.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
601 |
+
"visual.blocks.28.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
602 |
+
"visual.blocks.28.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
603 |
+
"visual.blocks.28.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
604 |
+
"visual.blocks.28.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
605 |
+
"visual.blocks.28.norm1.bias": "model-00001-of-00004.safetensors",
|
606 |
+
"visual.blocks.28.norm1.weight": "model-00001-of-00004.safetensors",
|
607 |
+
"visual.blocks.28.norm2.bias": "model-00001-of-00004.safetensors",
|
608 |
+
"visual.blocks.28.norm2.weight": "model-00001-of-00004.safetensors",
|
609 |
+
"visual.blocks.29.attn.proj.bias": "model-00001-of-00004.safetensors",
|
610 |
+
"visual.blocks.29.attn.proj.weight": "model-00001-of-00004.safetensors",
|
611 |
+
"visual.blocks.29.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
612 |
+
"visual.blocks.29.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
613 |
+
"visual.blocks.29.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
614 |
+
"visual.blocks.29.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
615 |
+
"visual.blocks.29.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
616 |
+
"visual.blocks.29.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
617 |
+
"visual.blocks.29.norm1.bias": "model-00001-of-00004.safetensors",
|
618 |
+
"visual.blocks.29.norm1.weight": "model-00001-of-00004.safetensors",
|
619 |
+
"visual.blocks.29.norm2.bias": "model-00001-of-00004.safetensors",
|
620 |
+
"visual.blocks.29.norm2.weight": "model-00001-of-00004.safetensors",
|
621 |
+
"visual.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
|
622 |
+
"visual.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
|
623 |
+
"visual.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
624 |
+
"visual.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
625 |
+
"visual.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
626 |
+
"visual.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
627 |
+
"visual.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
628 |
+
"visual.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
629 |
+
"visual.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
|
630 |
+
"visual.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
|
631 |
+
"visual.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
|
632 |
+
"visual.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
|
633 |
+
"visual.blocks.30.attn.proj.bias": "model-00001-of-00004.safetensors",
|
634 |
+
"visual.blocks.30.attn.proj.weight": "model-00001-of-00004.safetensors",
|
635 |
+
"visual.blocks.30.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
636 |
+
"visual.blocks.30.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
637 |
+
"visual.blocks.30.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
638 |
+
"visual.blocks.30.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
639 |
+
"visual.blocks.30.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
640 |
+
"visual.blocks.30.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
641 |
+
"visual.blocks.30.norm1.bias": "model-00001-of-00004.safetensors",
|
642 |
+
"visual.blocks.30.norm1.weight": "model-00001-of-00004.safetensors",
|
643 |
+
"visual.blocks.30.norm2.bias": "model-00001-of-00004.safetensors",
|
644 |
+
"visual.blocks.30.norm2.weight": "model-00001-of-00004.safetensors",
|
645 |
+
"visual.blocks.31.attn.proj.bias": "model-00001-of-00004.safetensors",
|
646 |
+
"visual.blocks.31.attn.proj.weight": "model-00001-of-00004.safetensors",
|
647 |
+
"visual.blocks.31.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
648 |
+
"visual.blocks.31.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
649 |
+
"visual.blocks.31.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
650 |
+
"visual.blocks.31.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
651 |
+
"visual.blocks.31.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
652 |
+
"visual.blocks.31.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
653 |
+
"visual.blocks.31.norm1.bias": "model-00001-of-00004.safetensors",
|
654 |
+
"visual.blocks.31.norm1.weight": "model-00001-of-00004.safetensors",
|
655 |
+
"visual.blocks.31.norm2.bias": "model-00001-of-00004.safetensors",
|
656 |
+
"visual.blocks.31.norm2.weight": "model-00001-of-00004.safetensors",
|
657 |
+
"visual.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
|
658 |
+
"visual.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
|
659 |
+
"visual.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
660 |
+
"visual.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
661 |
+
"visual.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
662 |
+
"visual.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
663 |
+
"visual.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
664 |
+
"visual.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
665 |
+
"visual.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
|
666 |
+
"visual.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
|
667 |
+
"visual.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
|
668 |
+
"visual.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
|
669 |
+
"visual.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
|
670 |
+
"visual.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
|
671 |
+
"visual.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
672 |
+
"visual.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
673 |
+
"visual.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
674 |
+
"visual.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
675 |
+
"visual.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
676 |
+
"visual.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
677 |
+
"visual.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
|
678 |
+
"visual.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
|
679 |
+
"visual.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
|
680 |
+
"visual.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
|
681 |
+
"visual.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
|
682 |
+
"visual.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
|
683 |
+
"visual.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
684 |
+
"visual.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
685 |
+
"visual.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
686 |
+
"visual.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
687 |
+
"visual.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
688 |
+
"visual.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
689 |
+
"visual.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
|
690 |
+
"visual.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
|
691 |
+
"visual.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
|
692 |
+
"visual.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
|
693 |
+
"visual.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
|
694 |
+
"visual.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
|
695 |
+
"visual.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
696 |
+
"visual.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
697 |
+
"visual.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
698 |
+
"visual.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
699 |
+
"visual.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
700 |
+
"visual.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
701 |
+
"visual.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
|
702 |
+
"visual.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
|
703 |
+
"visual.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
|
704 |
+
"visual.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
|
705 |
+
"visual.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
|
706 |
+
"visual.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
|
707 |
+
"visual.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
708 |
+
"visual.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
709 |
+
"visual.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
710 |
+
"visual.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
711 |
+
"visual.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
712 |
+
"visual.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
713 |
+
"visual.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
|
714 |
+
"visual.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
|
715 |
+
"visual.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
|
716 |
+
"visual.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
|
717 |
+
"visual.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
|
718 |
+
"visual.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
|
719 |
+
"visual.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
720 |
+
"visual.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
721 |
+
"visual.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
722 |
+
"visual.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
723 |
+
"visual.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
724 |
+
"visual.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
725 |
+
"visual.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
|
726 |
+
"visual.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
|
727 |
+
"visual.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
|
728 |
+
"visual.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
|
729 |
+
"visual.merger.ln_q.bias": "model-00001-of-00004.safetensors",
|
730 |
+
"visual.merger.ln_q.weight": "model-00001-of-00004.safetensors",
|
731 |
+
"visual.merger.mlp.0.bias": "model-00001-of-00004.safetensors",
|
732 |
+
"visual.merger.mlp.0.weight": "model-00001-of-00004.safetensors",
|
733 |
+
"visual.merger.mlp.2.bias": "model-00001-of-00004.safetensors",
|
734 |
+
"visual.merger.mlp.2.weight": "model-00001-of-00004.safetensors",
|
735 |
+
"visual.patch_embed.proj.weight": "model-00001-of-00004.safetensors"
|
736 |
+
}
|
737 |
+
}
|
checkpoint-241/preprocessor_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": true,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.48145466,
|
8 |
+
0.4578275,
|
9 |
+
0.40821073
|
10 |
+
],
|
11 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"max_pixels": 2359296,
|
18 |
+
"merge_size": 2,
|
19 |
+
"min_pixels": 3136,
|
20 |
+
"patch_size": 14,
|
21 |
+
"processor_class": "Qwen2VLProcessor",
|
22 |
+
"resample": 3,
|
23 |
+
"rescale_factor": 0.00392156862745098,
|
24 |
+
"size": {
|
25 |
+
"max_pixels": 12845056,
|
26 |
+
"min_pixels": 3136
|
27 |
+
},
|
28 |
+
"temporal_patch_size": 2
|
29 |
+
}
|
checkpoint-241/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d403e954abc89e96308d8637d290658695b5e101f292b3e6dd7e3c2752b9424
|
3 |
+
size 15984
|
checkpoint-241/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5eed9c892f40db2d9f0c11b64a1f2b812e420a5b54706735c68df948a4eb8a22
|
3 |
+
size 15984
|
checkpoint-241/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84586131ba6d790bc95a762a9807c4782575037ebb04e4e97b5b158f035757f9
|
3 |
+
size 15984
|
checkpoint-241/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:844e99f43dd145609e9beb94b89ca061ae6d08ca575716cc656424a6ed8c3fdf
|
3 |
+
size 15984
|
checkpoint-241/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b683dc40255503d6ae82080494d4e0c57d3220af114ee73eae892ee98c912a70
|
3 |
+
size 15984
|
checkpoint-241/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed16a9e8519510ad538724e07bf79f634447334198c717f71ade7f6da0e5b3be
|
3 |
+
size 15984
|
checkpoint-241/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5abc637c74b84025333f13d2156dd89ec3b470f5f3e9f4df457f9f9f57f294ae
|
3 |
+
size 15984
|
checkpoint-241/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02abfe3f8324ef502df71ba1ca3e755af045337592cbbd52990ba26e6b118de6
|
3 |
+
size 15984
|
checkpoint-241/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39728186492e883fc14019879a5303128fbcf023c6d47c47abd9636d8f85c1d3
|
3 |
+
size 1064
|
checkpoint-241/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-241/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88a3a6fcb80132f76da8aa40cdc3fccd7e5d8468ef15421f5b0c2715e85217d2
|
3 |
+
size 11420538
|
checkpoint-241/tokenizer_config.json
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<|object_ref_start|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"151647": {
|
37 |
+
"content": "<|object_ref_end|>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"151648": {
|
45 |
+
"content": "<|box_start|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"151649": {
|
53 |
+
"content": "<|box_end|>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"151650": {
|
61 |
+
"content": "<|quad_start|>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"151651": {
|
69 |
+
"content": "<|quad_end|>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"151652": {
|
77 |
+
"content": "<|vision_start|>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"151653": {
|
85 |
+
"content": "<|vision_end|>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"151654": {
|
93 |
+
"content": "<|vision_pad|>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"151655": {
|
101 |
+
"content": "<|image_pad|>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"151656": {
|
109 |
+
"content": "<|video_pad|>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
}
|
116 |
+
},
|
117 |
+
"additional_special_tokens": [
|
118 |
+
"<|im_start|>",
|
119 |
+
"<|im_end|>",
|
120 |
+
"<|object_ref_start|>",
|
121 |
+
"<|object_ref_end|>",
|
122 |
+
"<|box_start|>",
|
123 |
+
"<|box_end|>",
|
124 |
+
"<|quad_start|>",
|
125 |
+
"<|quad_end|>",
|
126 |
+
"<|vision_start|>",
|
127 |
+
"<|vision_end|>",
|
128 |
+
"<|vision_pad|>",
|
129 |
+
"<|image_pad|>",
|
130 |
+
"<|video_pad|>"
|
131 |
+
],
|
132 |
+
"bos_token": null,
|
133 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
134 |
+
"clean_up_tokenization_spaces": false,
|
135 |
+
"eos_token": "<|im_end|>",
|
136 |
+
"errors": "replace",
|
137 |
+
"extra_special_tokens": {},
|
138 |
+
"model_max_length": 32768,
|
139 |
+
"pad_token": "<|endoftext|>",
|
140 |
+
"padding_side": "left",
|
141 |
+
"processor_class": "Qwen2VLProcessor",
|
142 |
+
"split_special_tokens": false,
|
143 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
144 |
+
"unk_token": null
|
145 |
+
}
|
checkpoint-241/trainer_state.json
ADDED
@@ -0,0 +1,3166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 241,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"completion_length": 137.0703125,
|
13 |
+
"epoch": 0.004149377593360996,
|
14 |
+
"grad_norm": 39.23092968312426,
|
15 |
+
"kl": 0.0,
|
16 |
+
"learning_rate": 9.95850622406639e-07,
|
17 |
+
"loss": -0.0,
|
18 |
+
"reward": 0.3203125,
|
19 |
+
"reward_std": 0.3337579667568207,
|
20 |
+
"rewards/accuracy_reward": 0.1953125,
|
21 |
+
"rewards/format_reward": 0.125,
|
22 |
+
"step": 1
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"completion_length": 132.765625,
|
26 |
+
"epoch": 0.008298755186721992,
|
27 |
+
"grad_norm": 22.785772433442506,
|
28 |
+
"kl": 0.0020294189453125,
|
29 |
+
"learning_rate": 9.91701244813278e-07,
|
30 |
+
"loss": 0.0001,
|
31 |
+
"reward": 0.38671875,
|
32 |
+
"reward_std": 0.3885350227355957,
|
33 |
+
"rewards/accuracy_reward": 0.20703125,
|
34 |
+
"rewards/format_reward": 0.1796875,
|
35 |
+
"step": 2
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"completion_length": 150.3828125,
|
39 |
+
"epoch": 0.012448132780082987,
|
40 |
+
"grad_norm": 46.167032159328485,
|
41 |
+
"kl": 0.0030059814453125,
|
42 |
+
"learning_rate": 9.87551867219917e-07,
|
43 |
+
"loss": 0.0001,
|
44 |
+
"reward": 0.38671875,
|
45 |
+
"reward_std": 0.4264633357524872,
|
46 |
+
"rewards/accuracy_reward": 0.109375,
|
47 |
+
"rewards/format_reward": 0.27734375,
|
48 |
+
"step": 3
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"completion_length": 132.20703125,
|
52 |
+
"epoch": 0.016597510373443983,
|
53 |
+
"grad_norm": 30.388246262465664,
|
54 |
+
"kl": 0.00701904296875,
|
55 |
+
"learning_rate": 9.83402489626556e-07,
|
56 |
+
"loss": 0.0003,
|
57 |
+
"reward": 0.62890625,
|
58 |
+
"reward_std": 0.568841814994812,
|
59 |
+
"rewards/accuracy_reward": 0.23046875,
|
60 |
+
"rewards/format_reward": 0.3984375,
|
61 |
+
"step": 4
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"completion_length": 134.53515625,
|
65 |
+
"epoch": 0.02074688796680498,
|
66 |
+
"grad_norm": 9.020739859426017,
|
67 |
+
"kl": 0.0101318359375,
|
68 |
+
"learning_rate": 9.792531120331948e-07,
|
69 |
+
"loss": 0.0004,
|
70 |
+
"reward": 0.734375,
|
71 |
+
"reward_std": 0.49411386251449585,
|
72 |
+
"rewards/accuracy_reward": 0.1640625,
|
73 |
+
"rewards/format_reward": 0.5703125,
|
74 |
+
"step": 5
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"completion_length": 144.62890625,
|
78 |
+
"epoch": 0.024896265560165973,
|
79 |
+
"grad_norm": 15.42225433374535,
|
80 |
+
"kl": 0.015869140625,
|
81 |
+
"learning_rate": 9.75103734439834e-07,
|
82 |
+
"loss": 0.0006,
|
83 |
+
"reward": 0.88671875,
|
84 |
+
"reward_std": 0.4697031080722809,
|
85 |
+
"rewards/accuracy_reward": 0.2109375,
|
86 |
+
"rewards/format_reward": 0.67578125,
|
87 |
+
"step": 6
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"completion_length": 141.0390625,
|
91 |
+
"epoch": 0.029045643153526972,
|
92 |
+
"grad_norm": 40.46833833863793,
|
93 |
+
"kl": 0.01409912109375,
|
94 |
+
"learning_rate": 9.70954356846473e-07,
|
95 |
+
"loss": 0.0006,
|
96 |
+
"reward": 0.90625,
|
97 |
+
"reward_std": 0.5133033990859985,
|
98 |
+
"rewards/accuracy_reward": 0.23828125,
|
99 |
+
"rewards/format_reward": 0.66796875,
|
100 |
+
"step": 7
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"completion_length": 132.3828125,
|
104 |
+
"epoch": 0.03319502074688797,
|
105 |
+
"grad_norm": 11.62408553819753,
|
106 |
+
"kl": 0.017578125,
|
107 |
+
"learning_rate": 9.66804979253112e-07,
|
108 |
+
"loss": 0.0007,
|
109 |
+
"reward": 0.9140625,
|
110 |
+
"reward_std": 0.4123005270957947,
|
111 |
+
"rewards/accuracy_reward": 0.22265625,
|
112 |
+
"rewards/format_reward": 0.69140625,
|
113 |
+
"step": 8
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"completion_length": 127.2265625,
|
117 |
+
"epoch": 0.03734439834024896,
|
118 |
+
"grad_norm": 18.357863148161705,
|
119 |
+
"kl": 0.0189208984375,
|
120 |
+
"learning_rate": 9.62655601659751e-07,
|
121 |
+
"loss": 0.0008,
|
122 |
+
"reward": 0.90625,
|
123 |
+
"reward_std": 0.3882066607475281,
|
124 |
+
"rewards/accuracy_reward": 0.125,
|
125 |
+
"rewards/format_reward": 0.78125,
|
126 |
+
"step": 9
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"completion_length": 123.10546875,
|
130 |
+
"epoch": 0.04149377593360996,
|
131 |
+
"grad_norm": 31.541022539135124,
|
132 |
+
"kl": 0.0218505859375,
|
133 |
+
"learning_rate": 9.5850622406639e-07,
|
134 |
+
"loss": 0.0009,
|
135 |
+
"reward": 1.08984375,
|
136 |
+
"reward_std": 0.339883029460907,
|
137 |
+
"rewards/accuracy_reward": 0.234375,
|
138 |
+
"rewards/format_reward": 0.85546875,
|
139 |
+
"step": 10
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"completion_length": 106.26171875,
|
143 |
+
"epoch": 0.04564315352697095,
|
144 |
+
"grad_norm": 17.562568127530522,
|
145 |
+
"kl": 0.031494140625,
|
146 |
+
"learning_rate": 9.54356846473029e-07,
|
147 |
+
"loss": 0.0013,
|
148 |
+
"reward": 1.0546875,
|
149 |
+
"reward_std": 0.221227765083313,
|
150 |
+
"rewards/accuracy_reward": 0.109375,
|
151 |
+
"rewards/format_reward": 0.9453125,
|
152 |
+
"step": 11
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"completion_length": 103.5546875,
|
156 |
+
"epoch": 0.04979253112033195,
|
157 |
+
"grad_norm": 9.276928026993419,
|
158 |
+
"kl": 0.031982421875,
|
159 |
+
"learning_rate": 9.50207468879668e-07,
|
160 |
+
"loss": 0.0013,
|
161 |
+
"reward": 1.09375,
|
162 |
+
"reward_std": 0.2309482991695404,
|
163 |
+
"rewards/accuracy_reward": 0.13671875,
|
164 |
+
"rewards/format_reward": 0.95703125,
|
165 |
+
"step": 12
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"completion_length": 108.484375,
|
169 |
+
"epoch": 0.05394190871369295,
|
170 |
+
"grad_norm": 5.118367832344082,
|
171 |
+
"kl": 0.033447265625,
|
172 |
+
"learning_rate": 9.460580912863069e-07,
|
173 |
+
"loss": 0.0013,
|
174 |
+
"reward": 1.2421875,
|
175 |
+
"reward_std": 0.3411697447299957,
|
176 |
+
"rewards/accuracy_reward": 0.27734375,
|
177 |
+
"rewards/format_reward": 0.96484375,
|
178 |
+
"step": 13
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"completion_length": 116.8515625,
|
182 |
+
"epoch": 0.058091286307053944,
|
183 |
+
"grad_norm": 12.049394415121267,
|
184 |
+
"kl": 0.03857421875,
|
185 |
+
"learning_rate": 9.41908713692946e-07,
|
186 |
+
"loss": 0.0015,
|
187 |
+
"reward": 1.1328125,
|
188 |
+
"reward_std": 0.21509549021720886,
|
189 |
+
"rewards/accuracy_reward": 0.18359375,
|
190 |
+
"rewards/format_reward": 0.94921875,
|
191 |
+
"step": 14
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"completion_length": 107.8671875,
|
195 |
+
"epoch": 0.06224066390041494,
|
196 |
+
"grad_norm": 13.769852298124052,
|
197 |
+
"kl": 0.036376953125,
|
198 |
+
"learning_rate": 9.377593360995851e-07,
|
199 |
+
"loss": 0.0015,
|
200 |
+
"reward": 1.0390625,
|
201 |
+
"reward_std": 0.2277078926563263,
|
202 |
+
"rewards/accuracy_reward": 0.09765625,
|
203 |
+
"rewards/format_reward": 0.94140625,
|
204 |
+
"step": 15
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"completion_length": 111.6171875,
|
208 |
+
"epoch": 0.06639004149377593,
|
209 |
+
"grad_norm": 45.043975182978954,
|
210 |
+
"kl": 0.359375,
|
211 |
+
"learning_rate": 9.33609958506224e-07,
|
212 |
+
"loss": 0.0143,
|
213 |
+
"reward": 1.0234375,
|
214 |
+
"reward_std": 0.263639897108078,
|
215 |
+
"rewards/accuracy_reward": 0.08984375,
|
216 |
+
"rewards/format_reward": 0.93359375,
|
217 |
+
"step": 16
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"completion_length": 103.00390625,
|
221 |
+
"epoch": 0.07053941908713693,
|
222 |
+
"grad_norm": 3.010533753288046,
|
223 |
+
"kl": 0.04443359375,
|
224 |
+
"learning_rate": 9.294605809128631e-07,
|
225 |
+
"loss": 0.0018,
|
226 |
+
"reward": 1.08203125,
|
227 |
+
"reward_std": 0.23664388060569763,
|
228 |
+
"rewards/accuracy_reward": 0.109375,
|
229 |
+
"rewards/format_reward": 0.97265625,
|
230 |
+
"step": 17
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"completion_length": 106.34375,
|
234 |
+
"epoch": 0.07468879668049792,
|
235 |
+
"grad_norm": 7.87354723018806,
|
236 |
+
"kl": 0.06884765625,
|
237 |
+
"learning_rate": 9.25311203319502e-07,
|
238 |
+
"loss": 0.0028,
|
239 |
+
"reward": 1.1953125,
|
240 |
+
"reward_std": 0.2938428819179535,
|
241 |
+
"rewards/accuracy_reward": 0.2109375,
|
242 |
+
"rewards/format_reward": 0.984375,
|
243 |
+
"step": 18
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"completion_length": 94.46484375,
|
247 |
+
"epoch": 0.07883817427385892,
|
248 |
+
"grad_norm": 10.041019792600245,
|
249 |
+
"kl": 0.055419921875,
|
250 |
+
"learning_rate": 9.21161825726141e-07,
|
251 |
+
"loss": 0.0022,
|
252 |
+
"reward": 1.21875,
|
253 |
+
"reward_std": 0.2210792601108551,
|
254 |
+
"rewards/accuracy_reward": 0.2421875,
|
255 |
+
"rewards/format_reward": 0.9765625,
|
256 |
+
"step": 19
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"completion_length": 92.640625,
|
260 |
+
"epoch": 0.08298755186721991,
|
261 |
+
"grad_norm": 7.905738191363626,
|
262 |
+
"kl": 0.05615234375,
|
263 |
+
"learning_rate": 9.170124481327801e-07,
|
264 |
+
"loss": 0.0022,
|
265 |
+
"reward": 1.11328125,
|
266 |
+
"reward_std": 0.21515560150146484,
|
267 |
+
"rewards/accuracy_reward": 0.140625,
|
268 |
+
"rewards/format_reward": 0.97265625,
|
269 |
+
"step": 20
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"completion_length": 90.3984375,
|
273 |
+
"epoch": 0.08713692946058091,
|
274 |
+
"grad_norm": 5.157524094818503,
|
275 |
+
"kl": 0.06298828125,
|
276 |
+
"learning_rate": 9.12863070539419e-07,
|
277 |
+
"loss": 0.0025,
|
278 |
+
"reward": 1.26171875,
|
279 |
+
"reward_std": 0.2477707862854004,
|
280 |
+
"rewards/accuracy_reward": 0.26953125,
|
281 |
+
"rewards/format_reward": 0.9921875,
|
282 |
+
"step": 21
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"completion_length": 97.3203125,
|
286 |
+
"epoch": 0.0912863070539419,
|
287 |
+
"grad_norm": 7.010674413524611,
|
288 |
+
"kl": 0.072265625,
|
289 |
+
"learning_rate": 9.087136929460581e-07,
|
290 |
+
"loss": 0.0029,
|
291 |
+
"reward": 1.23046875,
|
292 |
+
"reward_std": 0.20519250631332397,
|
293 |
+
"rewards/accuracy_reward": 0.2421875,
|
294 |
+
"rewards/format_reward": 0.98828125,
|
295 |
+
"step": 22
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"completion_length": 93.70703125,
|
299 |
+
"epoch": 0.0954356846473029,
|
300 |
+
"grad_norm": 895.4823242055704,
|
301 |
+
"kl": 4.6875,
|
302 |
+
"learning_rate": 9.04564315352697e-07,
|
303 |
+
"loss": 0.1871,
|
304 |
+
"reward": 1.1953125,
|
305 |
+
"reward_std": 0.2628646492958069,
|
306 |
+
"rewards/accuracy_reward": 0.2265625,
|
307 |
+
"rewards/format_reward": 0.96875,
|
308 |
+
"step": 23
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"completion_length": 92.921875,
|
312 |
+
"epoch": 0.0995850622406639,
|
313 |
+
"grad_norm": 9.141621520119115,
|
314 |
+
"kl": 0.087890625,
|
315 |
+
"learning_rate": 9.004149377593361e-07,
|
316 |
+
"loss": 0.0035,
|
317 |
+
"reward": 1.140625,
|
318 |
+
"reward_std": 0.23703515529632568,
|
319 |
+
"rewards/accuracy_reward": 0.1640625,
|
320 |
+
"rewards/format_reward": 0.9765625,
|
321 |
+
"step": 24
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"completion_length": 89.5859375,
|
325 |
+
"epoch": 0.1037344398340249,
|
326 |
+
"grad_norm": 11.592503375213493,
|
327 |
+
"kl": 0.0888671875,
|
328 |
+
"learning_rate": 8.96265560165975e-07,
|
329 |
+
"loss": 0.0036,
|
330 |
+
"reward": 1.2578125,
|
331 |
+
"reward_std": 0.2782890200614929,
|
332 |
+
"rewards/accuracy_reward": 0.26953125,
|
333 |
+
"rewards/format_reward": 0.98828125,
|
334 |
+
"step": 25
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"completion_length": 92.765625,
|
338 |
+
"epoch": 0.1078838174273859,
|
339 |
+
"grad_norm": 4.844037513428872,
|
340 |
+
"kl": 0.08740234375,
|
341 |
+
"learning_rate": 8.921161825726141e-07,
|
342 |
+
"loss": 0.0035,
|
343 |
+
"reward": 1.21484375,
|
344 |
+
"reward_std": 0.3296912610530853,
|
345 |
+
"rewards/accuracy_reward": 0.234375,
|
346 |
+
"rewards/format_reward": 0.98046875,
|
347 |
+
"step": 26
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"completion_length": 77.96484375,
|
351 |
+
"epoch": 0.11203319502074689,
|
352 |
+
"grad_norm": 28.980687466181028,
|
353 |
+
"kl": 0.11279296875,
|
354 |
+
"learning_rate": 8.879668049792531e-07,
|
355 |
+
"loss": 0.0045,
|
356 |
+
"reward": 1.2421875,
|
357 |
+
"reward_std": 0.24264347553253174,
|
358 |
+
"rewards/accuracy_reward": 0.2578125,
|
359 |
+
"rewards/format_reward": 0.984375,
|
360 |
+
"step": 27
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"completion_length": 72.87109375,
|
364 |
+
"epoch": 0.11618257261410789,
|
365 |
+
"grad_norm": 7972.551755677257,
|
366 |
+
"kl": 2.359375,
|
367 |
+
"learning_rate": 8.83817427385892e-07,
|
368 |
+
"loss": 0.0942,
|
369 |
+
"reward": 1.25390625,
|
370 |
+
"reward_std": 0.26447463035583496,
|
371 |
+
"rewards/accuracy_reward": 0.26953125,
|
372 |
+
"rewards/format_reward": 0.984375,
|
373 |
+
"step": 28
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"completion_length": 80.0234375,
|
377 |
+
"epoch": 0.12033195020746888,
|
378 |
+
"grad_norm": 148541.21316902922,
|
379 |
+
"kl": 102.0,
|
380 |
+
"learning_rate": 8.796680497925311e-07,
|
381 |
+
"loss": 4.0946,
|
382 |
+
"reward": 1.21484375,
|
383 |
+
"reward_std": 0.2021351009607315,
|
384 |
+
"rewards/accuracy_reward": 0.22265625,
|
385 |
+
"rewards/format_reward": 0.9921875,
|
386 |
+
"step": 29
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"completion_length": 71.890625,
|
390 |
+
"epoch": 0.12448132780082988,
|
391 |
+
"grad_norm": 155.11184072334507,
|
392 |
+
"kl": 0.154296875,
|
393 |
+
"learning_rate": 8.7551867219917e-07,
|
394 |
+
"loss": 0.0062,
|
395 |
+
"reward": 1.2421875,
|
396 |
+
"reward_std": 0.33442190289497375,
|
397 |
+
"rewards/accuracy_reward": 0.28125,
|
398 |
+
"rewards/format_reward": 0.9609375,
|
399 |
+
"step": 30
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"completion_length": 72.9765625,
|
403 |
+
"epoch": 0.12863070539419086,
|
404 |
+
"grad_norm": 6.669125194641157,
|
405 |
+
"kl": 0.1435546875,
|
406 |
+
"learning_rate": 8.713692946058091e-07,
|
407 |
+
"loss": 0.0058,
|
408 |
+
"reward": 1.25390625,
|
409 |
+
"reward_std": 0.26459574699401855,
|
410 |
+
"rewards/accuracy_reward": 0.25390625,
|
411 |
+
"rewards/format_reward": 1.0,
|
412 |
+
"step": 31
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"completion_length": 92.39453125,
|
416 |
+
"epoch": 0.13278008298755187,
|
417 |
+
"grad_norm": 8.594154520894591,
|
418 |
+
"kl": 0.12060546875,
|
419 |
+
"learning_rate": 8.672199170124481e-07,
|
420 |
+
"loss": 0.0048,
|
421 |
+
"reward": 1.296875,
|
422 |
+
"reward_std": 0.26187676191329956,
|
423 |
+
"rewards/accuracy_reward": 0.31640625,
|
424 |
+
"rewards/format_reward": 0.98046875,
|
425 |
+
"step": 32
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"completion_length": 78.91796875,
|
429 |
+
"epoch": 0.13692946058091288,
|
430 |
+
"grad_norm": 7.555816953155662,
|
431 |
+
"kl": 0.158203125,
|
432 |
+
"learning_rate": 8.630705394190871e-07,
|
433 |
+
"loss": 0.0063,
|
434 |
+
"reward": 1.203125,
|
435 |
+
"reward_std": 0.25460314750671387,
|
436 |
+
"rewards/accuracy_reward": 0.21484375,
|
437 |
+
"rewards/format_reward": 0.98828125,
|
438 |
+
"step": 33
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"completion_length": 73.20703125,
|
442 |
+
"epoch": 0.14107883817427386,
|
443 |
+
"grad_norm": 19.83628645685219,
|
444 |
+
"kl": 0.1591796875,
|
445 |
+
"learning_rate": 8.589211618257261e-07,
|
446 |
+
"loss": 0.0064,
|
447 |
+
"reward": 1.28515625,
|
448 |
+
"reward_std": 0.3227723240852356,
|
449 |
+
"rewards/accuracy_reward": 0.30078125,
|
450 |
+
"rewards/format_reward": 0.984375,
|
451 |
+
"step": 34
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"completion_length": 73.3515625,
|
455 |
+
"epoch": 0.14522821576763487,
|
456 |
+
"grad_norm": 8.311376906204279,
|
457 |
+
"kl": 0.2197265625,
|
458 |
+
"learning_rate": 8.54771784232365e-07,
|
459 |
+
"loss": 0.0088,
|
460 |
+
"reward": 1.1953125,
|
461 |
+
"reward_std": 0.2911452054977417,
|
462 |
+
"rewards/accuracy_reward": 0.21875,
|
463 |
+
"rewards/format_reward": 0.9765625,
|
464 |
+
"step": 35
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"completion_length": 81.99609375,
|
468 |
+
"epoch": 0.14937759336099585,
|
469 |
+
"grad_norm": 10.43036199186392,
|
470 |
+
"kl": 0.12890625,
|
471 |
+
"learning_rate": 8.506224066390041e-07,
|
472 |
+
"loss": 0.0052,
|
473 |
+
"reward": 1.2578125,
|
474 |
+
"reward_std": 0.3043610155582428,
|
475 |
+
"rewards/accuracy_reward": 0.2734375,
|
476 |
+
"rewards/format_reward": 0.984375,
|
477 |
+
"step": 36
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"completion_length": 73.796875,
|
481 |
+
"epoch": 0.15352697095435686,
|
482 |
+
"grad_norm": 57.24643236121668,
|
483 |
+
"kl": 0.1357421875,
|
484 |
+
"learning_rate": 8.464730290456431e-07,
|
485 |
+
"loss": 0.0054,
|
486 |
+
"reward": 1.21875,
|
487 |
+
"reward_std": 0.28197723627090454,
|
488 |
+
"rewards/accuracy_reward": 0.25,
|
489 |
+
"rewards/format_reward": 0.96875,
|
490 |
+
"step": 37
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"completion_length": 89.75390625,
|
494 |
+
"epoch": 0.15767634854771784,
|
495 |
+
"grad_norm": 19.872397533152718,
|
496 |
+
"kl": 0.1064453125,
|
497 |
+
"learning_rate": 8.423236514522821e-07,
|
498 |
+
"loss": 0.0043,
|
499 |
+
"reward": 1.234375,
|
500 |
+
"reward_std": 0.250660240650177,
|
501 |
+
"rewards/accuracy_reward": 0.234375,
|
502 |
+
"rewards/format_reward": 1.0,
|
503 |
+
"step": 38
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"completion_length": 92.703125,
|
507 |
+
"epoch": 0.16182572614107885,
|
508 |
+
"grad_norm": 11.503069481139981,
|
509 |
+
"kl": 0.09326171875,
|
510 |
+
"learning_rate": 8.381742738589212e-07,
|
511 |
+
"loss": 0.0037,
|
512 |
+
"reward": 1.234375,
|
513 |
+
"reward_std": 0.34505003690719604,
|
514 |
+
"rewards/accuracy_reward": 0.2734375,
|
515 |
+
"rewards/format_reward": 0.9609375,
|
516 |
+
"step": 39
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"completion_length": 89.04296875,
|
520 |
+
"epoch": 0.16597510373443983,
|
521 |
+
"grad_norm": 18.044182586396225,
|
522 |
+
"kl": 0.103515625,
|
523 |
+
"learning_rate": 8.340248962655602e-07,
|
524 |
+
"loss": 0.0041,
|
525 |
+
"reward": 1.140625,
|
526 |
+
"reward_std": 0.28612154722213745,
|
527 |
+
"rewards/accuracy_reward": 0.171875,
|
528 |
+
"rewards/format_reward": 0.96875,
|
529 |
+
"step": 40
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"completion_length": 92.12890625,
|
533 |
+
"epoch": 0.17012448132780084,
|
534 |
+
"grad_norm": 955.7098863804349,
|
535 |
+
"kl": 6.21875,
|
536 |
+
"learning_rate": 8.298755186721992e-07,
|
537 |
+
"loss": 0.2497,
|
538 |
+
"reward": 1.15625,
|
539 |
+
"reward_std": 0.3010457158088684,
|
540 |
+
"rewards/accuracy_reward": 0.24609375,
|
541 |
+
"rewards/format_reward": 0.91015625,
|
542 |
+
"step": 41
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"completion_length": 92.9375,
|
546 |
+
"epoch": 0.17427385892116182,
|
547 |
+
"grad_norm": 19789.27042408252,
|
548 |
+
"kl": 38.75,
|
549 |
+
"learning_rate": 8.257261410788381e-07,
|
550 |
+
"loss": 1.5507,
|
551 |
+
"reward": 1.17578125,
|
552 |
+
"reward_std": 0.24686214327812195,
|
553 |
+
"rewards/accuracy_reward": 0.20703125,
|
554 |
+
"rewards/format_reward": 0.96875,
|
555 |
+
"step": 42
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"completion_length": 103.703125,
|
559 |
+
"epoch": 0.17842323651452283,
|
560 |
+
"grad_norm": 5.178711424894338,
|
561 |
+
"kl": 0.07666015625,
|
562 |
+
"learning_rate": 8.215767634854771e-07,
|
563 |
+
"loss": 0.0031,
|
564 |
+
"reward": 1.16015625,
|
565 |
+
"reward_std": 0.2846824824810028,
|
566 |
+
"rewards/accuracy_reward": 0.1875,
|
567 |
+
"rewards/format_reward": 0.97265625,
|
568 |
+
"step": 43
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"completion_length": 96.78125,
|
572 |
+
"epoch": 0.1825726141078838,
|
573 |
+
"grad_norm": 79.81973712987309,
|
574 |
+
"kl": 0.2138671875,
|
575 |
+
"learning_rate": 8.174273858921161e-07,
|
576 |
+
"loss": 0.0086,
|
577 |
+
"reward": 1.1171875,
|
578 |
+
"reward_std": 0.2437995821237564,
|
579 |
+
"rewards/accuracy_reward": 0.1875,
|
580 |
+
"rewards/format_reward": 0.9296875,
|
581 |
+
"step": 44
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"completion_length": 105.375,
|
585 |
+
"epoch": 0.18672199170124482,
|
586 |
+
"grad_norm": 44.03437371953703,
|
587 |
+
"kl": 0.1083984375,
|
588 |
+
"learning_rate": 8.132780082987552e-07,
|
589 |
+
"loss": 0.0043,
|
590 |
+
"reward": 1.1328125,
|
591 |
+
"reward_std": 0.28126898407936096,
|
592 |
+
"rewards/accuracy_reward": 0.171875,
|
593 |
+
"rewards/format_reward": 0.9609375,
|
594 |
+
"step": 45
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"completion_length": 95.625,
|
598 |
+
"epoch": 0.1908713692946058,
|
599 |
+
"grad_norm": 255.29741353447812,
|
600 |
+
"kl": 0.2158203125,
|
601 |
+
"learning_rate": 8.091286307053942e-07,
|
602 |
+
"loss": 0.0087,
|
603 |
+
"reward": 1.26953125,
|
604 |
+
"reward_std": 0.30966654419898987,
|
605 |
+
"rewards/accuracy_reward": 0.28515625,
|
606 |
+
"rewards/format_reward": 0.984375,
|
607 |
+
"step": 46
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"completion_length": 90.71484375,
|
611 |
+
"epoch": 0.1950207468879668,
|
612 |
+
"grad_norm": 141.664562557487,
|
613 |
+
"kl": 0.28125,
|
614 |
+
"learning_rate": 8.049792531120332e-07,
|
615 |
+
"loss": 0.0112,
|
616 |
+
"reward": 1.10546875,
|
617 |
+
"reward_std": 0.2388685643672943,
|
618 |
+
"rewards/accuracy_reward": 0.1484375,
|
619 |
+
"rewards/format_reward": 0.95703125,
|
620 |
+
"step": 47
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"completion_length": 104.390625,
|
624 |
+
"epoch": 0.1991701244813278,
|
625 |
+
"grad_norm": 26.547793382795557,
|
626 |
+
"kl": 0.0625,
|
627 |
+
"learning_rate": 8.008298755186722e-07,
|
628 |
+
"loss": 0.0025,
|
629 |
+
"reward": 1.17578125,
|
630 |
+
"reward_std": 0.3045119643211365,
|
631 |
+
"rewards/accuracy_reward": 0.21875,
|
632 |
+
"rewards/format_reward": 0.95703125,
|
633 |
+
"step": 48
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"completion_length": 103.8359375,
|
637 |
+
"epoch": 0.2033195020746888,
|
638 |
+
"grad_norm": 11.71623541450062,
|
639 |
+
"kl": 0.06103515625,
|
640 |
+
"learning_rate": 7.966804979253111e-07,
|
641 |
+
"loss": 0.0024,
|
642 |
+
"reward": 1.26953125,
|
643 |
+
"reward_std": 0.31901323795318604,
|
644 |
+
"rewards/accuracy_reward": 0.3046875,
|
645 |
+
"rewards/format_reward": 0.96484375,
|
646 |
+
"step": 49
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"completion_length": 98.74609375,
|
650 |
+
"epoch": 0.2074688796680498,
|
651 |
+
"grad_norm": 28.06161637024887,
|
652 |
+
"kl": 0.078125,
|
653 |
+
"learning_rate": 7.925311203319502e-07,
|
654 |
+
"loss": 0.0031,
|
655 |
+
"reward": 1.15234375,
|
656 |
+
"reward_std": 0.23013246059417725,
|
657 |
+
"rewards/accuracy_reward": 0.19140625,
|
658 |
+
"rewards/format_reward": 0.9609375,
|
659 |
+
"step": 50
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"completion_length": 106.44140625,
|
663 |
+
"epoch": 0.21161825726141079,
|
664 |
+
"grad_norm": 8.385727882590416,
|
665 |
+
"kl": 0.057373046875,
|
666 |
+
"learning_rate": 7.883817427385891e-07,
|
667 |
+
"loss": 0.0023,
|
668 |
+
"reward": 1.1953125,
|
669 |
+
"reward_std": 0.2811848223209381,
|
670 |
+
"rewards/accuracy_reward": 0.21484375,
|
671 |
+
"rewards/format_reward": 0.98046875,
|
672 |
+
"step": 51
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"completion_length": 102.765625,
|
676 |
+
"epoch": 0.2157676348547718,
|
677 |
+
"grad_norm": 6.2531692527733425,
|
678 |
+
"kl": 0.06787109375,
|
679 |
+
"learning_rate": 7.842323651452282e-07,
|
680 |
+
"loss": 0.0027,
|
681 |
+
"reward": 1.34765625,
|
682 |
+
"reward_std": 0.2933124899864197,
|
683 |
+
"rewards/accuracy_reward": 0.375,
|
684 |
+
"rewards/format_reward": 0.97265625,
|
685 |
+
"step": 52
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"completion_length": 108.328125,
|
689 |
+
"epoch": 0.21991701244813278,
|
690 |
+
"grad_norm": 3.8970282813938035,
|
691 |
+
"kl": 0.05859375,
|
692 |
+
"learning_rate": 7.800829875518672e-07,
|
693 |
+
"loss": 0.0023,
|
694 |
+
"reward": 1.19921875,
|
695 |
+
"reward_std": 0.27631211280822754,
|
696 |
+
"rewards/accuracy_reward": 0.2421875,
|
697 |
+
"rewards/format_reward": 0.95703125,
|
698 |
+
"step": 53
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"completion_length": 115.71875,
|
702 |
+
"epoch": 0.22406639004149378,
|
703 |
+
"grad_norm": 4.0861620229361435,
|
704 |
+
"kl": 0.06396484375,
|
705 |
+
"learning_rate": 7.759336099585062e-07,
|
706 |
+
"loss": 0.0026,
|
707 |
+
"reward": 1.21875,
|
708 |
+
"reward_std": 0.32264500856399536,
|
709 |
+
"rewards/accuracy_reward": 0.26953125,
|
710 |
+
"rewards/format_reward": 0.94921875,
|
711 |
+
"step": 54
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"completion_length": 109.42578125,
|
715 |
+
"epoch": 0.22821576763485477,
|
716 |
+
"grad_norm": 2.2229514837482967,
|
717 |
+
"kl": 0.0576171875,
|
718 |
+
"learning_rate": 7.717842323651453e-07,
|
719 |
+
"loss": 0.0023,
|
720 |
+
"reward": 1.1875,
|
721 |
+
"reward_std": 0.2718299627304077,
|
722 |
+
"rewards/accuracy_reward": 0.22265625,
|
723 |
+
"rewards/format_reward": 0.96484375,
|
724 |
+
"step": 55
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"completion_length": 114.6171875,
|
728 |
+
"epoch": 0.23236514522821577,
|
729 |
+
"grad_norm": 6.044557856528395,
|
730 |
+
"kl": 0.051513671875,
|
731 |
+
"learning_rate": 7.676348547717842e-07,
|
732 |
+
"loss": 0.0021,
|
733 |
+
"reward": 1.28125,
|
734 |
+
"reward_std": 0.32618969678878784,
|
735 |
+
"rewards/accuracy_reward": 0.3125,
|
736 |
+
"rewards/format_reward": 0.96875,
|
737 |
+
"step": 56
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"completion_length": 104.9921875,
|
741 |
+
"epoch": 0.23651452282157676,
|
742 |
+
"grad_norm": 3.7345492151935566,
|
743 |
+
"kl": 0.06298828125,
|
744 |
+
"learning_rate": 7.634854771784232e-07,
|
745 |
+
"loss": 0.0025,
|
746 |
+
"reward": 1.33203125,
|
747 |
+
"reward_std": 0.263650119304657,
|
748 |
+
"rewards/accuracy_reward": 0.359375,
|
749 |
+
"rewards/format_reward": 0.97265625,
|
750 |
+
"step": 57
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"completion_length": 117.24609375,
|
754 |
+
"epoch": 0.24066390041493776,
|
755 |
+
"grad_norm": 9.681979509468285,
|
756 |
+
"kl": 0.054443359375,
|
757 |
+
"learning_rate": 7.593360995850621e-07,
|
758 |
+
"loss": 0.0022,
|
759 |
+
"reward": 1.125,
|
760 |
+
"reward_std": 0.26918965578079224,
|
761 |
+
"rewards/accuracy_reward": 0.18359375,
|
762 |
+
"rewards/format_reward": 0.94140625,
|
763 |
+
"step": 58
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"completion_length": 110.26953125,
|
767 |
+
"epoch": 0.24481327800829875,
|
768 |
+
"grad_norm": 11.501649552098742,
|
769 |
+
"kl": 0.08251953125,
|
770 |
+
"learning_rate": 7.551867219917012e-07,
|
771 |
+
"loss": 0.0033,
|
772 |
+
"reward": 1.2109375,
|
773 |
+
"reward_std": 0.22527292370796204,
|
774 |
+
"rewards/accuracy_reward": 0.25,
|
775 |
+
"rewards/format_reward": 0.9609375,
|
776 |
+
"step": 59
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"completion_length": 108.19921875,
|
780 |
+
"epoch": 0.24896265560165975,
|
781 |
+
"grad_norm": 9.965135528231466,
|
782 |
+
"kl": 0.06591796875,
|
783 |
+
"learning_rate": 7.510373443983403e-07,
|
784 |
+
"loss": 0.0026,
|
785 |
+
"reward": 1.2734375,
|
786 |
+
"reward_std": 0.3159399628639221,
|
787 |
+
"rewards/accuracy_reward": 0.328125,
|
788 |
+
"rewards/format_reward": 0.9453125,
|
789 |
+
"step": 60
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"completion_length": 121.76171875,
|
793 |
+
"epoch": 0.25311203319502074,
|
794 |
+
"grad_norm": 1.8431613725044658,
|
795 |
+
"kl": 0.054931640625,
|
796 |
+
"learning_rate": 7.468879668049792e-07,
|
797 |
+
"loss": 0.0022,
|
798 |
+
"reward": 1.23046875,
|
799 |
+
"reward_std": 0.30954664945602417,
|
800 |
+
"rewards/accuracy_reward": 0.27734375,
|
801 |
+
"rewards/format_reward": 0.953125,
|
802 |
+
"step": 61
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"completion_length": 115.984375,
|
806 |
+
"epoch": 0.2572614107883817,
|
807 |
+
"grad_norm": 14.722550985552658,
|
808 |
+
"kl": 0.07763671875,
|
809 |
+
"learning_rate": 7.427385892116183e-07,
|
810 |
+
"loss": 0.0031,
|
811 |
+
"reward": 1.1171875,
|
812 |
+
"reward_std": 0.2740333080291748,
|
813 |
+
"rewards/accuracy_reward": 0.1875,
|
814 |
+
"rewards/format_reward": 0.9296875,
|
815 |
+
"step": 62
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"completion_length": 122.40625,
|
819 |
+
"epoch": 0.26141078838174275,
|
820 |
+
"grad_norm": 2.3435103733008082,
|
821 |
+
"kl": 0.0576171875,
|
822 |
+
"learning_rate": 7.385892116182572e-07,
|
823 |
+
"loss": 0.0023,
|
824 |
+
"reward": 1.16015625,
|
825 |
+
"reward_std": 0.32881489396095276,
|
826 |
+
"rewards/accuracy_reward": 0.24609375,
|
827 |
+
"rewards/format_reward": 0.9140625,
|
828 |
+
"step": 63
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"completion_length": 111.37890625,
|
832 |
+
"epoch": 0.26556016597510373,
|
833 |
+
"grad_norm": 5.3464512193055205,
|
834 |
+
"kl": 0.0654296875,
|
835 |
+
"learning_rate": 7.344398340248963e-07,
|
836 |
+
"loss": 0.0026,
|
837 |
+
"reward": 1.26953125,
|
838 |
+
"reward_std": 0.27697107195854187,
|
839 |
+
"rewards/accuracy_reward": 0.28515625,
|
840 |
+
"rewards/format_reward": 0.984375,
|
841 |
+
"step": 64
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"completion_length": 109.5078125,
|
845 |
+
"epoch": 0.2697095435684647,
|
846 |
+
"grad_norm": 22.06078984271988,
|
847 |
+
"kl": 0.06298828125,
|
848 |
+
"learning_rate": 7.302904564315351e-07,
|
849 |
+
"loss": 0.0025,
|
850 |
+
"reward": 1.2109375,
|
851 |
+
"reward_std": 0.2712310552597046,
|
852 |
+
"rewards/accuracy_reward": 0.24609375,
|
853 |
+
"rewards/format_reward": 0.96484375,
|
854 |
+
"step": 65
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"completion_length": 120.81640625,
|
858 |
+
"epoch": 0.27385892116182575,
|
859 |
+
"grad_norm": 7.466388660174733,
|
860 |
+
"kl": 0.06298828125,
|
861 |
+
"learning_rate": 7.261410788381742e-07,
|
862 |
+
"loss": 0.0025,
|
863 |
+
"reward": 1.23828125,
|
864 |
+
"reward_std": 0.27975520491600037,
|
865 |
+
"rewards/accuracy_reward": 0.28515625,
|
866 |
+
"rewards/format_reward": 0.953125,
|
867 |
+
"step": 66
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"completion_length": 110.5546875,
|
871 |
+
"epoch": 0.27800829875518673,
|
872 |
+
"grad_norm": 6.507257995412741,
|
873 |
+
"kl": 0.06787109375,
|
874 |
+
"learning_rate": 7.219917012448133e-07,
|
875 |
+
"loss": 0.0027,
|
876 |
+
"reward": 1.24609375,
|
877 |
+
"reward_std": 0.28682631254196167,
|
878 |
+
"rewards/accuracy_reward": 0.2734375,
|
879 |
+
"rewards/format_reward": 0.97265625,
|
880 |
+
"step": 67
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"completion_length": 107.703125,
|
884 |
+
"epoch": 0.2821576763485477,
|
885 |
+
"grad_norm": 10.657799163428932,
|
886 |
+
"kl": 0.061767578125,
|
887 |
+
"learning_rate": 7.178423236514522e-07,
|
888 |
+
"loss": 0.0025,
|
889 |
+
"reward": 1.23046875,
|
890 |
+
"reward_std": 0.262653648853302,
|
891 |
+
"rewards/accuracy_reward": 0.2734375,
|
892 |
+
"rewards/format_reward": 0.95703125,
|
893 |
+
"step": 68
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"completion_length": 98.36328125,
|
897 |
+
"epoch": 0.2863070539419087,
|
898 |
+
"grad_norm": 7.291922232973526,
|
899 |
+
"kl": 0.0634765625,
|
900 |
+
"learning_rate": 7.136929460580913e-07,
|
901 |
+
"loss": 0.0025,
|
902 |
+
"reward": 1.265625,
|
903 |
+
"reward_std": 0.2502795457839966,
|
904 |
+
"rewards/accuracy_reward": 0.2734375,
|
905 |
+
"rewards/format_reward": 0.9921875,
|
906 |
+
"step": 69
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"completion_length": 108.15625,
|
910 |
+
"epoch": 0.29045643153526973,
|
911 |
+
"grad_norm": 2531.5651653482937,
|
912 |
+
"kl": 0.77734375,
|
913 |
+
"learning_rate": 7.095435684647303e-07,
|
914 |
+
"loss": 0.0311,
|
915 |
+
"reward": 1.1953125,
|
916 |
+
"reward_std": 0.3056316375732422,
|
917 |
+
"rewards/accuracy_reward": 0.234375,
|
918 |
+
"rewards/format_reward": 0.9609375,
|
919 |
+
"step": 70
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"completion_length": 122.08203125,
|
923 |
+
"epoch": 0.2946058091286307,
|
924 |
+
"grad_norm": 7.2767653534750245,
|
925 |
+
"kl": 0.05517578125,
|
926 |
+
"learning_rate": 7.053941908713693e-07,
|
927 |
+
"loss": 0.0022,
|
928 |
+
"reward": 1.21484375,
|
929 |
+
"reward_std": 0.33597099781036377,
|
930 |
+
"rewards/accuracy_reward": 0.265625,
|
931 |
+
"rewards/format_reward": 0.94921875,
|
932 |
+
"step": 71
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"completion_length": 112.4140625,
|
936 |
+
"epoch": 0.2987551867219917,
|
937 |
+
"grad_norm": 5.558748098185352,
|
938 |
+
"kl": 0.0576171875,
|
939 |
+
"learning_rate": 7.012448132780083e-07,
|
940 |
+
"loss": 0.0023,
|
941 |
+
"reward": 1.23046875,
|
942 |
+
"reward_std": 0.27381569147109985,
|
943 |
+
"rewards/accuracy_reward": 0.25,
|
944 |
+
"rewards/format_reward": 0.98046875,
|
945 |
+
"step": 72
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"completion_length": 115.1171875,
|
949 |
+
"epoch": 0.3029045643153527,
|
950 |
+
"grad_norm": 146.48646129649492,
|
951 |
+
"kl": 0.1416015625,
|
952 |
+
"learning_rate": 6.970954356846472e-07,
|
953 |
+
"loss": 0.0056,
|
954 |
+
"reward": 1.24609375,
|
955 |
+
"reward_std": 0.3475721478462219,
|
956 |
+
"rewards/accuracy_reward": 0.296875,
|
957 |
+
"rewards/format_reward": 0.94921875,
|
958 |
+
"step": 73
|
959 |
+
},
|
960 |
+
{
|
961 |
+
"completion_length": 105.43359375,
|
962 |
+
"epoch": 0.3070539419087137,
|
963 |
+
"grad_norm": 20.98944404533785,
|
964 |
+
"kl": 0.1474609375,
|
965 |
+
"learning_rate": 6.929460580912863e-07,
|
966 |
+
"loss": 0.0059,
|
967 |
+
"reward": 1.18359375,
|
968 |
+
"reward_std": 0.1996288001537323,
|
969 |
+
"rewards/accuracy_reward": 0.22265625,
|
970 |
+
"rewards/format_reward": 0.9609375,
|
971 |
+
"step": 74
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"completion_length": 107.79296875,
|
975 |
+
"epoch": 0.3112033195020747,
|
976 |
+
"grad_norm": 2.8266704753608516,
|
977 |
+
"kl": 0.06201171875,
|
978 |
+
"learning_rate": 6.887966804979252e-07,
|
979 |
+
"loss": 0.0025,
|
980 |
+
"reward": 1.25,
|
981 |
+
"reward_std": 0.2760782241821289,
|
982 |
+
"rewards/accuracy_reward": 0.26953125,
|
983 |
+
"rewards/format_reward": 0.98046875,
|
984 |
+
"step": 75
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"completion_length": 121.66796875,
|
988 |
+
"epoch": 0.3153526970954357,
|
989 |
+
"grad_norm": 77.92500399218551,
|
990 |
+
"kl": 0.06689453125,
|
991 |
+
"learning_rate": 6.846473029045643e-07,
|
992 |
+
"loss": 0.0027,
|
993 |
+
"reward": 1.24609375,
|
994 |
+
"reward_std": 0.30910396575927734,
|
995 |
+
"rewards/accuracy_reward": 0.28515625,
|
996 |
+
"rewards/format_reward": 0.9609375,
|
997 |
+
"step": 76
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"completion_length": 111.671875,
|
1001 |
+
"epoch": 0.31950207468879666,
|
1002 |
+
"grad_norm": 4.702893593213397,
|
1003 |
+
"kl": 0.05224609375,
|
1004 |
+
"learning_rate": 6.804979253112033e-07,
|
1005 |
+
"loss": 0.0021,
|
1006 |
+
"reward": 1.1953125,
|
1007 |
+
"reward_std": 0.224736750125885,
|
1008 |
+
"rewards/accuracy_reward": 0.22265625,
|
1009 |
+
"rewards/format_reward": 0.97265625,
|
1010 |
+
"step": 77
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"completion_length": 100.1640625,
|
1014 |
+
"epoch": 0.3236514522821577,
|
1015 |
+
"grad_norm": 14.209228868230555,
|
1016 |
+
"kl": 0.08740234375,
|
1017 |
+
"learning_rate": 6.763485477178423e-07,
|
1018 |
+
"loss": 0.0035,
|
1019 |
+
"reward": 1.171875,
|
1020 |
+
"reward_std": 0.21961188316345215,
|
1021 |
+
"rewards/accuracy_reward": 0.19921875,
|
1022 |
+
"rewards/format_reward": 0.97265625,
|
1023 |
+
"step": 78
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"completion_length": 109.49609375,
|
1027 |
+
"epoch": 0.3278008298755187,
|
1028 |
+
"grad_norm": 579.9463703947171,
|
1029 |
+
"kl": 0.18359375,
|
1030 |
+
"learning_rate": 6.721991701244814e-07,
|
1031 |
+
"loss": 0.0074,
|
1032 |
+
"reward": 1.19140625,
|
1033 |
+
"reward_std": 0.3556343615055084,
|
1034 |
+
"rewards/accuracy_reward": 0.25,
|
1035 |
+
"rewards/format_reward": 0.94140625,
|
1036 |
+
"step": 79
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"completion_length": 105.04296875,
|
1040 |
+
"epoch": 0.33195020746887965,
|
1041 |
+
"grad_norm": 5927.641237621651,
|
1042 |
+
"kl": 6.4375,
|
1043 |
+
"learning_rate": 6.680497925311202e-07,
|
1044 |
+
"loss": 0.2576,
|
1045 |
+
"reward": 1.25390625,
|
1046 |
+
"reward_std": 0.337135374546051,
|
1047 |
+
"rewards/accuracy_reward": 0.2890625,
|
1048 |
+
"rewards/format_reward": 0.96484375,
|
1049 |
+
"step": 80
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"completion_length": 104.91796875,
|
1053 |
+
"epoch": 0.3360995850622407,
|
1054 |
+
"grad_norm": 4.577287332890265,
|
1055 |
+
"kl": 0.068359375,
|
1056 |
+
"learning_rate": 6.639004149377593e-07,
|
1057 |
+
"loss": 0.0027,
|
1058 |
+
"reward": 1.2578125,
|
1059 |
+
"reward_std": 0.22225633263587952,
|
1060 |
+
"rewards/accuracy_reward": 0.265625,
|
1061 |
+
"rewards/format_reward": 0.9921875,
|
1062 |
+
"step": 81
|
1063 |
+
},
|
1064 |
+
{
|
1065 |
+
"completion_length": 110.57421875,
|
1066 |
+
"epoch": 0.34024896265560167,
|
1067 |
+
"grad_norm": 80.31923623358058,
|
1068 |
+
"kl": 0.142578125,
|
1069 |
+
"learning_rate": 6.597510373443983e-07,
|
1070 |
+
"loss": 0.0057,
|
1071 |
+
"reward": 1.24609375,
|
1072 |
+
"reward_std": 0.30580008029937744,
|
1073 |
+
"rewards/accuracy_reward": 0.28515625,
|
1074 |
+
"rewards/format_reward": 0.9609375,
|
1075 |
+
"step": 82
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"completion_length": 110.4140625,
|
1079 |
+
"epoch": 0.34439834024896265,
|
1080 |
+
"grad_norm": 3.697288528310834,
|
1081 |
+
"kl": 0.0712890625,
|
1082 |
+
"learning_rate": 6.556016597510373e-07,
|
1083 |
+
"loss": 0.0029,
|
1084 |
+
"reward": 1.25390625,
|
1085 |
+
"reward_std": 0.2552226185798645,
|
1086 |
+
"rewards/accuracy_reward": 0.28125,
|
1087 |
+
"rewards/format_reward": 0.97265625,
|
1088 |
+
"step": 83
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"completion_length": 104.67578125,
|
1092 |
+
"epoch": 0.34854771784232363,
|
1093 |
+
"grad_norm": 5.229318975289039,
|
1094 |
+
"kl": 0.06982421875,
|
1095 |
+
"learning_rate": 6.514522821576763e-07,
|
1096 |
+
"loss": 0.0028,
|
1097 |
+
"reward": 1.26953125,
|
1098 |
+
"reward_std": 0.24407757818698883,
|
1099 |
+
"rewards/accuracy_reward": 0.29296875,
|
1100 |
+
"rewards/format_reward": 0.9765625,
|
1101 |
+
"step": 84
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"completion_length": 103.8828125,
|
1105 |
+
"epoch": 0.35269709543568467,
|
1106 |
+
"grad_norm": 2252.8465055849706,
|
1107 |
+
"kl": 18.75,
|
1108 |
+
"learning_rate": 6.473029045643154e-07,
|
1109 |
+
"loss": 0.7462,
|
1110 |
+
"reward": 1.21875,
|
1111 |
+
"reward_std": 0.32842758297920227,
|
1112 |
+
"rewards/accuracy_reward": 0.23828125,
|
1113 |
+
"rewards/format_reward": 0.98046875,
|
1114 |
+
"step": 85
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"completion_length": 110.5625,
|
1118 |
+
"epoch": 0.35684647302904565,
|
1119 |
+
"grad_norm": 4.971947739502407,
|
1120 |
+
"kl": 0.0673828125,
|
1121 |
+
"learning_rate": 6.431535269709544e-07,
|
1122 |
+
"loss": 0.0027,
|
1123 |
+
"reward": 1.2421875,
|
1124 |
+
"reward_std": 0.28188830614089966,
|
1125 |
+
"rewards/accuracy_reward": 0.2734375,
|
1126 |
+
"rewards/format_reward": 0.96875,
|
1127 |
+
"step": 86
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"completion_length": 118.6484375,
|
1131 |
+
"epoch": 0.36099585062240663,
|
1132 |
+
"grad_norm": 8.208637190208675,
|
1133 |
+
"kl": 0.0634765625,
|
1134 |
+
"learning_rate": 6.390041493775933e-07,
|
1135 |
+
"loss": 0.0025,
|
1136 |
+
"reward": 1.06640625,
|
1137 |
+
"reward_std": 0.25959229469299316,
|
1138 |
+
"rewards/accuracy_reward": 0.11328125,
|
1139 |
+
"rewards/format_reward": 0.953125,
|
1140 |
+
"step": 87
|
1141 |
+
},
|
1142 |
+
{
|
1143 |
+
"completion_length": 96.6875,
|
1144 |
+
"epoch": 0.3651452282157676,
|
1145 |
+
"grad_norm": 38.459676626860556,
|
1146 |
+
"kl": 0.1552734375,
|
1147 |
+
"learning_rate": 6.348547717842323e-07,
|
1148 |
+
"loss": 0.0062,
|
1149 |
+
"reward": 1.29296875,
|
1150 |
+
"reward_std": 0.29796260595321655,
|
1151 |
+
"rewards/accuracy_reward": 0.34765625,
|
1152 |
+
"rewards/format_reward": 0.9453125,
|
1153 |
+
"step": 88
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"completion_length": 92.484375,
|
1157 |
+
"epoch": 0.36929460580912865,
|
1158 |
+
"grad_norm": 11.251071020115205,
|
1159 |
+
"kl": 0.087890625,
|
1160 |
+
"learning_rate": 6.307053941908713e-07,
|
1161 |
+
"loss": 0.0035,
|
1162 |
+
"reward": 1.1328125,
|
1163 |
+
"reward_std": 0.26419880986213684,
|
1164 |
+
"rewards/accuracy_reward": 0.171875,
|
1165 |
+
"rewards/format_reward": 0.9609375,
|
1166 |
+
"step": 89
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"completion_length": 94.71875,
|
1170 |
+
"epoch": 0.37344398340248963,
|
1171 |
+
"grad_norm": 73.08860324819888,
|
1172 |
+
"kl": 0.1318359375,
|
1173 |
+
"learning_rate": 6.265560165975103e-07,
|
1174 |
+
"loss": 0.0053,
|
1175 |
+
"reward": 1.24609375,
|
1176 |
+
"reward_std": 0.28619101643562317,
|
1177 |
+
"rewards/accuracy_reward": 0.26171875,
|
1178 |
+
"rewards/format_reward": 0.984375,
|
1179 |
+
"step": 90
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"completion_length": 105.15625,
|
1183 |
+
"epoch": 0.3775933609958506,
|
1184 |
+
"grad_norm": 32.762748338362975,
|
1185 |
+
"kl": 0.07763671875,
|
1186 |
+
"learning_rate": 6.224066390041493e-07,
|
1187 |
+
"loss": 0.0031,
|
1188 |
+
"reward": 1.2109375,
|
1189 |
+
"reward_std": 0.33037883043289185,
|
1190 |
+
"rewards/accuracy_reward": 0.23828125,
|
1191 |
+
"rewards/format_reward": 0.97265625,
|
1192 |
+
"step": 91
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"completion_length": 96.0703125,
|
1196 |
+
"epoch": 0.3817427385892116,
|
1197 |
+
"grad_norm": 5.087858102518854,
|
1198 |
+
"kl": 0.07861328125,
|
1199 |
+
"learning_rate": 6.182572614107884e-07,
|
1200 |
+
"loss": 0.0031,
|
1201 |
+
"reward": 1.2265625,
|
1202 |
+
"reward_std": 0.3091992139816284,
|
1203 |
+
"rewards/accuracy_reward": 0.2421875,
|
1204 |
+
"rewards/format_reward": 0.984375,
|
1205 |
+
"step": 92
|
1206 |
+
},
|
1207 |
+
{
|
1208 |
+
"completion_length": 100.95703125,
|
1209 |
+
"epoch": 0.38589211618257263,
|
1210 |
+
"grad_norm": 12.724022811120527,
|
1211 |
+
"kl": 0.0830078125,
|
1212 |
+
"learning_rate": 6.141078838174274e-07,
|
1213 |
+
"loss": 0.0033,
|
1214 |
+
"reward": 1.21875,
|
1215 |
+
"reward_std": 0.29461750388145447,
|
1216 |
+
"rewards/accuracy_reward": 0.24609375,
|
1217 |
+
"rewards/format_reward": 0.97265625,
|
1218 |
+
"step": 93
|
1219 |
+
},
|
1220 |
+
{
|
1221 |
+
"completion_length": 104.11328125,
|
1222 |
+
"epoch": 0.3900414937759336,
|
1223 |
+
"grad_norm": 17.194627861953816,
|
1224 |
+
"kl": 0.08642578125,
|
1225 |
+
"learning_rate": 6.099585062240664e-07,
|
1226 |
+
"loss": 0.0035,
|
1227 |
+
"reward": 1.2265625,
|
1228 |
+
"reward_std": 0.2846662104129791,
|
1229 |
+
"rewards/accuracy_reward": 0.2421875,
|
1230 |
+
"rewards/format_reward": 0.984375,
|
1231 |
+
"step": 94
|
1232 |
+
},
|
1233 |
+
{
|
1234 |
+
"completion_length": 92.14453125,
|
1235 |
+
"epoch": 0.3941908713692946,
|
1236 |
+
"grad_norm": 7.192313306035128,
|
1237 |
+
"kl": 0.08642578125,
|
1238 |
+
"learning_rate": 6.058091286307053e-07,
|
1239 |
+
"loss": 0.0035,
|
1240 |
+
"reward": 1.2734375,
|
1241 |
+
"reward_std": 0.23374123871326447,
|
1242 |
+
"rewards/accuracy_reward": 0.2890625,
|
1243 |
+
"rewards/format_reward": 0.984375,
|
1244 |
+
"step": 95
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"completion_length": 84.6328125,
|
1248 |
+
"epoch": 0.3983402489626556,
|
1249 |
+
"grad_norm": 47.641365377607805,
|
1250 |
+
"kl": 0.1025390625,
|
1251 |
+
"learning_rate": 6.016597510373443e-07,
|
1252 |
+
"loss": 0.0041,
|
1253 |
+
"reward": 1.2890625,
|
1254 |
+
"reward_std": 0.28897759318351746,
|
1255 |
+
"rewards/accuracy_reward": 0.30859375,
|
1256 |
+
"rewards/format_reward": 0.98046875,
|
1257 |
+
"step": 96
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"completion_length": 78.61328125,
|
1261 |
+
"epoch": 0.4024896265560166,
|
1262 |
+
"grad_norm": 253.81419290673912,
|
1263 |
+
"kl": 1.9609375,
|
1264 |
+
"learning_rate": 5.975103734439834e-07,
|
1265 |
+
"loss": 0.0787,
|
1266 |
+
"reward": 1.2734375,
|
1267 |
+
"reward_std": 0.2571094334125519,
|
1268 |
+
"rewards/accuracy_reward": 0.28515625,
|
1269 |
+
"rewards/format_reward": 0.98828125,
|
1270 |
+
"step": 97
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"completion_length": 88.37109375,
|
1274 |
+
"epoch": 0.4066390041493776,
|
1275 |
+
"grad_norm": 12.19756385611491,
|
1276 |
+
"kl": 0.0986328125,
|
1277 |
+
"learning_rate": 5.933609958506224e-07,
|
1278 |
+
"loss": 0.0039,
|
1279 |
+
"reward": 1.234375,
|
1280 |
+
"reward_std": 0.2579057812690735,
|
1281 |
+
"rewards/accuracy_reward": 0.25,
|
1282 |
+
"rewards/format_reward": 0.984375,
|
1283 |
+
"step": 98
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"completion_length": 94.3125,
|
1287 |
+
"epoch": 0.4107883817427386,
|
1288 |
+
"grad_norm": 8.78041276853543,
|
1289 |
+
"kl": 0.0927734375,
|
1290 |
+
"learning_rate": 5.892116182572614e-07,
|
1291 |
+
"loss": 0.0037,
|
1292 |
+
"reward": 1.18359375,
|
1293 |
+
"reward_std": 0.32227471470832825,
|
1294 |
+
"rewards/accuracy_reward": 0.21875,
|
1295 |
+
"rewards/format_reward": 0.96484375,
|
1296 |
+
"step": 99
|
1297 |
+
},
|
1298 |
+
{
|
1299 |
+
"completion_length": 92.3828125,
|
1300 |
+
"epoch": 0.4149377593360996,
|
1301 |
+
"grad_norm": 8.518814664938573,
|
1302 |
+
"kl": 0.0859375,
|
1303 |
+
"learning_rate": 5.850622406639005e-07,
|
1304 |
+
"loss": 0.0034,
|
1305 |
+
"reward": 1.21484375,
|
1306 |
+
"reward_std": 0.24748478829860687,
|
1307 |
+
"rewards/accuracy_reward": 0.23046875,
|
1308 |
+
"rewards/format_reward": 0.984375,
|
1309 |
+
"step": 100
|
1310 |
+
},
|
1311 |
+
{
|
1312 |
+
"completion_length": 85.60546875,
|
1313 |
+
"epoch": 0.4190871369294606,
|
1314 |
+
"grad_norm": 4.704027215633879,
|
1315 |
+
"kl": 0.10205078125,
|
1316 |
+
"learning_rate": 5.809128630705394e-07,
|
1317 |
+
"loss": 0.0041,
|
1318 |
+
"reward": 1.1796875,
|
1319 |
+
"reward_std": 0.22647252678871155,
|
1320 |
+
"rewards/accuracy_reward": 0.19140625,
|
1321 |
+
"rewards/format_reward": 0.98828125,
|
1322 |
+
"step": 101
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"completion_length": 99.41796875,
|
1326 |
+
"epoch": 0.42323651452282157,
|
1327 |
+
"grad_norm": 4.680746289931085,
|
1328 |
+
"kl": 0.08935546875,
|
1329 |
+
"learning_rate": 5.767634854771784e-07,
|
1330 |
+
"loss": 0.0036,
|
1331 |
+
"reward": 1.36328125,
|
1332 |
+
"reward_std": 0.3082295060157776,
|
1333 |
+
"rewards/accuracy_reward": 0.37890625,
|
1334 |
+
"rewards/format_reward": 0.984375,
|
1335 |
+
"step": 102
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"completion_length": 93.4453125,
|
1339 |
+
"epoch": 0.42738589211618255,
|
1340 |
+
"grad_norm": 6.65500574546716,
|
1341 |
+
"kl": 0.1103515625,
|
1342 |
+
"learning_rate": 5.726141078838173e-07,
|
1343 |
+
"loss": 0.0044,
|
1344 |
+
"reward": 1.30078125,
|
1345 |
+
"reward_std": 0.2698420286178589,
|
1346 |
+
"rewards/accuracy_reward": 0.31640625,
|
1347 |
+
"rewards/format_reward": 0.984375,
|
1348 |
+
"step": 103
|
1349 |
+
},
|
1350 |
+
{
|
1351 |
+
"completion_length": 105.11328125,
|
1352 |
+
"epoch": 0.4315352697095436,
|
1353 |
+
"grad_norm": 5.773576507821817,
|
1354 |
+
"kl": 0.08251953125,
|
1355 |
+
"learning_rate": 5.684647302904564e-07,
|
1356 |
+
"loss": 0.0033,
|
1357 |
+
"reward": 1.2421875,
|
1358 |
+
"reward_std": 0.2864542603492737,
|
1359 |
+
"rewards/accuracy_reward": 0.265625,
|
1360 |
+
"rewards/format_reward": 0.9765625,
|
1361 |
+
"step": 104
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"completion_length": 87.703125,
|
1365 |
+
"epoch": 0.43568464730290457,
|
1366 |
+
"grad_norm": 11.513429520019525,
|
1367 |
+
"kl": 0.109375,
|
1368 |
+
"learning_rate": 5.643153526970955e-07,
|
1369 |
+
"loss": 0.0044,
|
1370 |
+
"reward": 1.27734375,
|
1371 |
+
"reward_std": 0.2987739145755768,
|
1372 |
+
"rewards/accuracy_reward": 0.2890625,
|
1373 |
+
"rewards/format_reward": 0.98828125,
|
1374 |
+
"step": 105
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"completion_length": 85.6328125,
|
1378 |
+
"epoch": 0.43983402489626555,
|
1379 |
+
"grad_norm": 7.2230530225685134,
|
1380 |
+
"kl": 0.10693359375,
|
1381 |
+
"learning_rate": 5.601659751037344e-07,
|
1382 |
+
"loss": 0.0043,
|
1383 |
+
"reward": 1.203125,
|
1384 |
+
"reward_std": 0.2508074939250946,
|
1385 |
+
"rewards/accuracy_reward": 0.2109375,
|
1386 |
+
"rewards/format_reward": 0.9921875,
|
1387 |
+
"step": 106
|
1388 |
+
},
|
1389 |
+
{
|
1390 |
+
"completion_length": 91.26171875,
|
1391 |
+
"epoch": 0.44398340248962653,
|
1392 |
+
"grad_norm": 11.723926666762416,
|
1393 |
+
"kl": 0.0849609375,
|
1394 |
+
"learning_rate": 5.560165975103735e-07,
|
1395 |
+
"loss": 0.0034,
|
1396 |
+
"reward": 1.2578125,
|
1397 |
+
"reward_std": 0.24281391501426697,
|
1398 |
+
"rewards/accuracy_reward": 0.2734375,
|
1399 |
+
"rewards/format_reward": 0.984375,
|
1400 |
+
"step": 107
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"completion_length": 85.66796875,
|
1404 |
+
"epoch": 0.44813278008298757,
|
1405 |
+
"grad_norm": 19.25236764754529,
|
1406 |
+
"kl": 0.09716796875,
|
1407 |
+
"learning_rate": 5.518672199170124e-07,
|
1408 |
+
"loss": 0.0039,
|
1409 |
+
"reward": 1.29296875,
|
1410 |
+
"reward_std": 0.27077654004096985,
|
1411 |
+
"rewards/accuracy_reward": 0.29296875,
|
1412 |
+
"rewards/format_reward": 1.0,
|
1413 |
+
"step": 108
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"completion_length": 95.21875,
|
1417 |
+
"epoch": 0.45228215767634855,
|
1418 |
+
"grad_norm": 3.839508040726909,
|
1419 |
+
"kl": 0.1015625,
|
1420 |
+
"learning_rate": 5.477178423236515e-07,
|
1421 |
+
"loss": 0.0041,
|
1422 |
+
"reward": 1.171875,
|
1423 |
+
"reward_std": 0.26314786076545715,
|
1424 |
+
"rewards/accuracy_reward": 0.203125,
|
1425 |
+
"rewards/format_reward": 0.96875,
|
1426 |
+
"step": 109
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"completion_length": 87.390625,
|
1430 |
+
"epoch": 0.45643153526970953,
|
1431 |
+
"grad_norm": 4.757921717516325,
|
1432 |
+
"kl": 0.1025390625,
|
1433 |
+
"learning_rate": 5.435684647302903e-07,
|
1434 |
+
"loss": 0.0041,
|
1435 |
+
"reward": 1.234375,
|
1436 |
+
"reward_std": 0.249478280544281,
|
1437 |
+
"rewards/accuracy_reward": 0.2421875,
|
1438 |
+
"rewards/format_reward": 0.9921875,
|
1439 |
+
"step": 110
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"completion_length": 90.4609375,
|
1443 |
+
"epoch": 0.4605809128630705,
|
1444 |
+
"grad_norm": 12.145850813087781,
|
1445 |
+
"kl": 0.08984375,
|
1446 |
+
"learning_rate": 5.394190871369294e-07,
|
1447 |
+
"loss": 0.0036,
|
1448 |
+
"reward": 1.1640625,
|
1449 |
+
"reward_std": 0.17517516016960144,
|
1450 |
+
"rewards/accuracy_reward": 0.16796875,
|
1451 |
+
"rewards/format_reward": 0.99609375,
|
1452 |
+
"step": 111
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"completion_length": 94.23046875,
|
1456 |
+
"epoch": 0.46473029045643155,
|
1457 |
+
"grad_norm": 11.118828549631772,
|
1458 |
+
"kl": 0.08740234375,
|
1459 |
+
"learning_rate": 5.352697095435685e-07,
|
1460 |
+
"loss": 0.0035,
|
1461 |
+
"reward": 1.203125,
|
1462 |
+
"reward_std": 0.30724799633026123,
|
1463 |
+
"rewards/accuracy_reward": 0.22265625,
|
1464 |
+
"rewards/format_reward": 0.98046875,
|
1465 |
+
"step": 112
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"completion_length": 98.54296875,
|
1469 |
+
"epoch": 0.46887966804979253,
|
1470 |
+
"grad_norm": 12.335705990530665,
|
1471 |
+
"kl": 0.091796875,
|
1472 |
+
"learning_rate": 5.311203319502074e-07,
|
1473 |
+
"loss": 0.0037,
|
1474 |
+
"reward": 1.3515625,
|
1475 |
+
"reward_std": 0.2899443805217743,
|
1476 |
+
"rewards/accuracy_reward": 0.3671875,
|
1477 |
+
"rewards/format_reward": 0.984375,
|
1478 |
+
"step": 113
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"completion_length": 87.42578125,
|
1482 |
+
"epoch": 0.4730290456431535,
|
1483 |
+
"grad_norm": 4.2994268361338,
|
1484 |
+
"kl": 0.10498046875,
|
1485 |
+
"learning_rate": 5.269709543568465e-07,
|
1486 |
+
"loss": 0.0042,
|
1487 |
+
"reward": 1.171875,
|
1488 |
+
"reward_std": 0.22647252678871155,
|
1489 |
+
"rewards/accuracy_reward": 0.18359375,
|
1490 |
+
"rewards/format_reward": 0.98828125,
|
1491 |
+
"step": 114
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"completion_length": 90.40234375,
|
1495 |
+
"epoch": 0.47717842323651455,
|
1496 |
+
"grad_norm": 7.3486884231249805,
|
1497 |
+
"kl": 0.10205078125,
|
1498 |
+
"learning_rate": 5.228215767634854e-07,
|
1499 |
+
"loss": 0.0041,
|
1500 |
+
"reward": 1.1796875,
|
1501 |
+
"reward_std": 0.26744821667671204,
|
1502 |
+
"rewards/accuracy_reward": 0.19140625,
|
1503 |
+
"rewards/format_reward": 0.98828125,
|
1504 |
+
"step": 115
|
1505 |
+
},
|
1506 |
+
{
|
1507 |
+
"completion_length": 93.9921875,
|
1508 |
+
"epoch": 0.48132780082987553,
|
1509 |
+
"grad_norm": 21.449341096677863,
|
1510 |
+
"kl": 0.09765625,
|
1511 |
+
"learning_rate": 5.186721991701245e-07,
|
1512 |
+
"loss": 0.0039,
|
1513 |
+
"reward": 1.27734375,
|
1514 |
+
"reward_std": 0.3352429270744324,
|
1515 |
+
"rewards/accuracy_reward": 0.296875,
|
1516 |
+
"rewards/format_reward": 0.98046875,
|
1517 |
+
"step": 116
|
1518 |
+
},
|
1519 |
+
{
|
1520 |
+
"completion_length": 97.37890625,
|
1521 |
+
"epoch": 0.4854771784232365,
|
1522 |
+
"grad_norm": 3.291074287652009,
|
1523 |
+
"kl": 0.0830078125,
|
1524 |
+
"learning_rate": 5.145228215767634e-07,
|
1525 |
+
"loss": 0.0033,
|
1526 |
+
"reward": 1.234375,
|
1527 |
+
"reward_std": 0.2131577730178833,
|
1528 |
+
"rewards/accuracy_reward": 0.25390625,
|
1529 |
+
"rewards/format_reward": 0.98046875,
|
1530 |
+
"step": 117
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"completion_length": 89.75390625,
|
1534 |
+
"epoch": 0.4896265560165975,
|
1535 |
+
"grad_norm": 8.052246239154032,
|
1536 |
+
"kl": 0.11083984375,
|
1537 |
+
"learning_rate": 5.103734439834024e-07,
|
1538 |
+
"loss": 0.0044,
|
1539 |
+
"reward": 1.140625,
|
1540 |
+
"reward_std": 0.19178494811058044,
|
1541 |
+
"rewards/accuracy_reward": 0.16796875,
|
1542 |
+
"rewards/format_reward": 0.97265625,
|
1543 |
+
"step": 118
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"completion_length": 91.37890625,
|
1547 |
+
"epoch": 0.49377593360995853,
|
1548 |
+
"grad_norm": 20.497960348017255,
|
1549 |
+
"kl": 0.11865234375,
|
1550 |
+
"learning_rate": 5.062240663900415e-07,
|
1551 |
+
"loss": 0.0047,
|
1552 |
+
"reward": 1.2421875,
|
1553 |
+
"reward_std": 0.3268205523490906,
|
1554 |
+
"rewards/accuracy_reward": 0.25390625,
|
1555 |
+
"rewards/format_reward": 0.98828125,
|
1556 |
+
"step": 119
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"completion_length": 109.734375,
|
1560 |
+
"epoch": 0.4979253112033195,
|
1561 |
+
"grad_norm": 5.486079926596014,
|
1562 |
+
"kl": 0.07568359375,
|
1563 |
+
"learning_rate": 5.020746887966804e-07,
|
1564 |
+
"loss": 0.003,
|
1565 |
+
"reward": 1.125,
|
1566 |
+
"reward_std": 0.2778772711753845,
|
1567 |
+
"rewards/accuracy_reward": 0.1875,
|
1568 |
+
"rewards/format_reward": 0.9375,
|
1569 |
+
"step": 120
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"completion_length": 91.80078125,
|
1573 |
+
"epoch": 0.5020746887966805,
|
1574 |
+
"grad_norm": 2.85121433781658,
|
1575 |
+
"kl": 0.09130859375,
|
1576 |
+
"learning_rate": 4.979253112033195e-07,
|
1577 |
+
"loss": 0.0036,
|
1578 |
+
"reward": 1.3359375,
|
1579 |
+
"reward_std": 0.21765941381454468,
|
1580 |
+
"rewards/accuracy_reward": 0.33984375,
|
1581 |
+
"rewards/format_reward": 0.99609375,
|
1582 |
+
"step": 121
|
1583 |
+
},
|
1584 |
+
{
|
1585 |
+
"completion_length": 108.34765625,
|
1586 |
+
"epoch": 0.5062240663900415,
|
1587 |
+
"grad_norm": 2.5487467805188415,
|
1588 |
+
"kl": 0.0703125,
|
1589 |
+
"learning_rate": 4.937759336099585e-07,
|
1590 |
+
"loss": 0.0028,
|
1591 |
+
"reward": 1.20703125,
|
1592 |
+
"reward_std": 0.24190281331539154,
|
1593 |
+
"rewards/accuracy_reward": 0.234375,
|
1594 |
+
"rewards/format_reward": 0.97265625,
|
1595 |
+
"step": 122
|
1596 |
+
},
|
1597 |
+
{
|
1598 |
+
"completion_length": 88.4296875,
|
1599 |
+
"epoch": 0.5103734439834025,
|
1600 |
+
"grad_norm": 9.052955326669567,
|
1601 |
+
"kl": 0.09326171875,
|
1602 |
+
"learning_rate": 4.896265560165974e-07,
|
1603 |
+
"loss": 0.0037,
|
1604 |
+
"reward": 1.30078125,
|
1605 |
+
"reward_std": 0.2738521099090576,
|
1606 |
+
"rewards/accuracy_reward": 0.3203125,
|
1607 |
+
"rewards/format_reward": 0.98046875,
|
1608 |
+
"step": 123
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"completion_length": 92.03125,
|
1612 |
+
"epoch": 0.5145228215767634,
|
1613 |
+
"grad_norm": 4.78722259192626,
|
1614 |
+
"kl": 0.10595703125,
|
1615 |
+
"learning_rate": 4.854771784232365e-07,
|
1616 |
+
"loss": 0.0042,
|
1617 |
+
"reward": 1.25,
|
1618 |
+
"reward_std": 0.2780294418334961,
|
1619 |
+
"rewards/accuracy_reward": 0.28515625,
|
1620 |
+
"rewards/format_reward": 0.96484375,
|
1621 |
+
"step": 124
|
1622 |
+
},
|
1623 |
+
{
|
1624 |
+
"completion_length": 90.37109375,
|
1625 |
+
"epoch": 0.5186721991701245,
|
1626 |
+
"grad_norm": 31.7592456228116,
|
1627 |
+
"kl": 0.1328125,
|
1628 |
+
"learning_rate": 4.813278008298756e-07,
|
1629 |
+
"loss": 0.0053,
|
1630 |
+
"reward": 1.26171875,
|
1631 |
+
"reward_std": 0.264590859413147,
|
1632 |
+
"rewards/accuracy_reward": 0.296875,
|
1633 |
+
"rewards/format_reward": 0.96484375,
|
1634 |
+
"step": 125
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"completion_length": 92.3203125,
|
1638 |
+
"epoch": 0.5228215767634855,
|
1639 |
+
"grad_norm": 3.431661013903984,
|
1640 |
+
"kl": 0.095703125,
|
1641 |
+
"learning_rate": 4.771784232365145e-07,
|
1642 |
+
"loss": 0.0038,
|
1643 |
+
"reward": 1.2890625,
|
1644 |
+
"reward_std": 0.2519586980342865,
|
1645 |
+
"rewards/accuracy_reward": 0.296875,
|
1646 |
+
"rewards/format_reward": 0.9921875,
|
1647 |
+
"step": 126
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"completion_length": 93.17578125,
|
1651 |
+
"epoch": 0.5269709543568465,
|
1652 |
+
"grad_norm": 4.2013084848725555,
|
1653 |
+
"kl": 0.091796875,
|
1654 |
+
"learning_rate": 4.7302904564315346e-07,
|
1655 |
+
"loss": 0.0037,
|
1656 |
+
"reward": 1.24609375,
|
1657 |
+
"reward_std": 0.22338411211967468,
|
1658 |
+
"rewards/accuracy_reward": 0.265625,
|
1659 |
+
"rewards/format_reward": 0.98046875,
|
1660 |
+
"step": 127
|
1661 |
+
},
|
1662 |
+
{
|
1663 |
+
"completion_length": 98.3359375,
|
1664 |
+
"epoch": 0.5311203319502075,
|
1665 |
+
"grad_norm": 10.80790694765271,
|
1666 |
+
"kl": 0.087890625,
|
1667 |
+
"learning_rate": 4.6887966804979253e-07,
|
1668 |
+
"loss": 0.0035,
|
1669 |
+
"reward": 1.171875,
|
1670 |
+
"reward_std": 0.2016046792268753,
|
1671 |
+
"rewards/accuracy_reward": 0.18359375,
|
1672 |
+
"rewards/format_reward": 0.98828125,
|
1673 |
+
"step": 128
|
1674 |
+
},
|
1675 |
+
{
|
1676 |
+
"completion_length": 102.2890625,
|
1677 |
+
"epoch": 0.5352697095435685,
|
1678 |
+
"grad_norm": 2.602202807896544,
|
1679 |
+
"kl": 0.08251953125,
|
1680 |
+
"learning_rate": 4.6473029045643154e-07,
|
1681 |
+
"loss": 0.0033,
|
1682 |
+
"reward": 1.2109375,
|
1683 |
+
"reward_std": 0.25826555490493774,
|
1684 |
+
"rewards/accuracy_reward": 0.24609375,
|
1685 |
+
"rewards/format_reward": 0.96484375,
|
1686 |
+
"step": 129
|
1687 |
+
},
|
1688 |
+
{
|
1689 |
+
"completion_length": 96.62109375,
|
1690 |
+
"epoch": 0.5394190871369294,
|
1691 |
+
"grad_norm": 9.873703703904674,
|
1692 |
+
"kl": 0.10888671875,
|
1693 |
+
"learning_rate": 4.605809128630705e-07,
|
1694 |
+
"loss": 0.0044,
|
1695 |
+
"reward": 1.22265625,
|
1696 |
+
"reward_std": 0.26187431812286377,
|
1697 |
+
"rewards/accuracy_reward": 0.25390625,
|
1698 |
+
"rewards/format_reward": 0.96875,
|
1699 |
+
"step": 130
|
1700 |
+
},
|
1701 |
+
{
|
1702 |
+
"completion_length": 98.99609375,
|
1703 |
+
"epoch": 0.5435684647302904,
|
1704 |
+
"grad_norm": 3.67428920521419,
|
1705 |
+
"kl": 0.0927734375,
|
1706 |
+
"learning_rate": 4.564315352697095e-07,
|
1707 |
+
"loss": 0.0037,
|
1708 |
+
"reward": 1.16796875,
|
1709 |
+
"reward_std": 0.2292679101228714,
|
1710 |
+
"rewards/accuracy_reward": 0.1953125,
|
1711 |
+
"rewards/format_reward": 0.97265625,
|
1712 |
+
"step": 131
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"completion_length": 92.67578125,
|
1716 |
+
"epoch": 0.5477178423236515,
|
1717 |
+
"grad_norm": 4.679154410147011,
|
1718 |
+
"kl": 0.08544921875,
|
1719 |
+
"learning_rate": 4.522821576763485e-07,
|
1720 |
+
"loss": 0.0034,
|
1721 |
+
"reward": 1.3359375,
|
1722 |
+
"reward_std": 0.35772189497947693,
|
1723 |
+
"rewards/accuracy_reward": 0.35546875,
|
1724 |
+
"rewards/format_reward": 0.98046875,
|
1725 |
+
"step": 132
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"completion_length": 106.16015625,
|
1729 |
+
"epoch": 0.5518672199170125,
|
1730 |
+
"grad_norm": 6.527275895854011,
|
1731 |
+
"kl": 0.07763671875,
|
1732 |
+
"learning_rate": 4.481327800829875e-07,
|
1733 |
+
"loss": 0.0031,
|
1734 |
+
"reward": 1.19140625,
|
1735 |
+
"reward_std": 0.2933124899864197,
|
1736 |
+
"rewards/accuracy_reward": 0.23046875,
|
1737 |
+
"rewards/format_reward": 0.9609375,
|
1738 |
+
"step": 133
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"completion_length": 98.29296875,
|
1742 |
+
"epoch": 0.5560165975103735,
|
1743 |
+
"grad_norm": 6.290852562410683,
|
1744 |
+
"kl": 0.08349609375,
|
1745 |
+
"learning_rate": 4.4398340248962654e-07,
|
1746 |
+
"loss": 0.0033,
|
1747 |
+
"reward": 1.24609375,
|
1748 |
+
"reward_std": 0.27056628465652466,
|
1749 |
+
"rewards/accuracy_reward": 0.27734375,
|
1750 |
+
"rewards/format_reward": 0.96875,
|
1751 |
+
"step": 134
|
1752 |
+
},
|
1753 |
+
{
|
1754 |
+
"completion_length": 103.40625,
|
1755 |
+
"epoch": 0.5601659751037344,
|
1756 |
+
"grad_norm": 9.043101857772628,
|
1757 |
+
"kl": 0.083984375,
|
1758 |
+
"learning_rate": 4.3983402489626555e-07,
|
1759 |
+
"loss": 0.0034,
|
1760 |
+
"reward": 1.3046875,
|
1761 |
+
"reward_std": 0.2771390676498413,
|
1762 |
+
"rewards/accuracy_reward": 0.32421875,
|
1763 |
+
"rewards/format_reward": 0.98046875,
|
1764 |
+
"step": 135
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"completion_length": 103.0078125,
|
1768 |
+
"epoch": 0.5643153526970954,
|
1769 |
+
"grad_norm": 4.096567104156379,
|
1770 |
+
"kl": 0.08349609375,
|
1771 |
+
"learning_rate": 4.3568464730290456e-07,
|
1772 |
+
"loss": 0.0033,
|
1773 |
+
"reward": 1.20703125,
|
1774 |
+
"reward_std": 0.23877452313899994,
|
1775 |
+
"rewards/accuracy_reward": 0.24609375,
|
1776 |
+
"rewards/format_reward": 0.9609375,
|
1777 |
+
"step": 136
|
1778 |
+
},
|
1779 |
+
{
|
1780 |
+
"completion_length": 98.453125,
|
1781 |
+
"epoch": 0.5684647302904564,
|
1782 |
+
"grad_norm": 5.621101251975948,
|
1783 |
+
"kl": 0.1015625,
|
1784 |
+
"learning_rate": 4.3153526970954357e-07,
|
1785 |
+
"loss": 0.0041,
|
1786 |
+
"reward": 1.19921875,
|
1787 |
+
"reward_std": 0.27381569147109985,
|
1788 |
+
"rewards/accuracy_reward": 0.25,
|
1789 |
+
"rewards/format_reward": 0.94921875,
|
1790 |
+
"step": 137
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"completion_length": 110.04296875,
|
1794 |
+
"epoch": 0.5726141078838174,
|
1795 |
+
"grad_norm": 8.904930677056841,
|
1796 |
+
"kl": 0.0712890625,
|
1797 |
+
"learning_rate": 4.273858921161825e-07,
|
1798 |
+
"loss": 0.0029,
|
1799 |
+
"reward": 1.2109375,
|
1800 |
+
"reward_std": 0.3127846121788025,
|
1801 |
+
"rewards/accuracy_reward": 0.2578125,
|
1802 |
+
"rewards/format_reward": 0.953125,
|
1803 |
+
"step": 138
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"completion_length": 107.1875,
|
1807 |
+
"epoch": 0.5767634854771784,
|
1808 |
+
"grad_norm": 4.817083135230505,
|
1809 |
+
"kl": 0.07666015625,
|
1810 |
+
"learning_rate": 4.2323651452282153e-07,
|
1811 |
+
"loss": 0.0031,
|
1812 |
+
"reward": 1.16796875,
|
1813 |
+
"reward_std": 0.25475409626960754,
|
1814 |
+
"rewards/accuracy_reward": 0.19921875,
|
1815 |
+
"rewards/format_reward": 0.96875,
|
1816 |
+
"step": 139
|
1817 |
+
},
|
1818 |
+
{
|
1819 |
+
"completion_length": 105.25,
|
1820 |
+
"epoch": 0.5809128630705395,
|
1821 |
+
"grad_norm": 29.934647705971432,
|
1822 |
+
"kl": 0.3984375,
|
1823 |
+
"learning_rate": 4.190871369294606e-07,
|
1824 |
+
"loss": 0.016,
|
1825 |
+
"reward": 1.30859375,
|
1826 |
+
"reward_std": 0.35114049911499023,
|
1827 |
+
"rewards/accuracy_reward": 0.33984375,
|
1828 |
+
"rewards/format_reward": 0.96875,
|
1829 |
+
"step": 140
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"completion_length": 100.92578125,
|
1833 |
+
"epoch": 0.5850622406639004,
|
1834 |
+
"grad_norm": 2.5340527761032625,
|
1835 |
+
"kl": 0.0830078125,
|
1836 |
+
"learning_rate": 4.149377593360996e-07,
|
1837 |
+
"loss": 0.0033,
|
1838 |
+
"reward": 1.2109375,
|
1839 |
+
"reward_std": 0.2652069628238678,
|
1840 |
+
"rewards/accuracy_reward": 0.234375,
|
1841 |
+
"rewards/format_reward": 0.9765625,
|
1842 |
+
"step": 141
|
1843 |
+
},
|
1844 |
+
{
|
1845 |
+
"completion_length": 101.79296875,
|
1846 |
+
"epoch": 0.5892116182572614,
|
1847 |
+
"grad_norm": 3.363293811701697,
|
1848 |
+
"kl": 0.08984375,
|
1849 |
+
"learning_rate": 4.1078838174273857e-07,
|
1850 |
+
"loss": 0.0036,
|
1851 |
+
"reward": 1.2421875,
|
1852 |
+
"reward_std": 0.262579083442688,
|
1853 |
+
"rewards/accuracy_reward": 0.28125,
|
1854 |
+
"rewards/format_reward": 0.9609375,
|
1855 |
+
"step": 142
|
1856 |
+
},
|
1857 |
+
{
|
1858 |
+
"completion_length": 98.31640625,
|
1859 |
+
"epoch": 0.5933609958506224,
|
1860 |
+
"grad_norm": 3.049695551614608,
|
1861 |
+
"kl": 0.091796875,
|
1862 |
+
"learning_rate": 4.066390041493776e-07,
|
1863 |
+
"loss": 0.0037,
|
1864 |
+
"reward": 1.19140625,
|
1865 |
+
"reward_std": 0.2985348701477051,
|
1866 |
+
"rewards/accuracy_reward": 0.234375,
|
1867 |
+
"rewards/format_reward": 0.95703125,
|
1868 |
+
"step": 143
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"completion_length": 97.63671875,
|
1872 |
+
"epoch": 0.5975103734439834,
|
1873 |
+
"grad_norm": 4.921448840015921,
|
1874 |
+
"kl": 0.08349609375,
|
1875 |
+
"learning_rate": 4.024896265560166e-07,
|
1876 |
+
"loss": 0.0033,
|
1877 |
+
"reward": 1.33984375,
|
1878 |
+
"reward_std": 0.27990859746932983,
|
1879 |
+
"rewards/accuracy_reward": 0.3515625,
|
1880 |
+
"rewards/format_reward": 0.98828125,
|
1881 |
+
"step": 144
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"completion_length": 119.609375,
|
1885 |
+
"epoch": 0.6016597510373444,
|
1886 |
+
"grad_norm": 2.821821714985559,
|
1887 |
+
"kl": 0.06884765625,
|
1888 |
+
"learning_rate": 3.9834024896265554e-07,
|
1889 |
+
"loss": 0.0027,
|
1890 |
+
"reward": 1.2578125,
|
1891 |
+
"reward_std": 0.3430861532688141,
|
1892 |
+
"rewards/accuracy_reward": 0.30078125,
|
1893 |
+
"rewards/format_reward": 0.95703125,
|
1894 |
+
"step": 145
|
1895 |
+
},
|
1896 |
+
{
|
1897 |
+
"completion_length": 100.03125,
|
1898 |
+
"epoch": 0.6058091286307054,
|
1899 |
+
"grad_norm": 2.9588689744644654,
|
1900 |
+
"kl": 0.103515625,
|
1901 |
+
"learning_rate": 3.9419087136929455e-07,
|
1902 |
+
"loss": 0.0041,
|
1903 |
+
"reward": 1.20703125,
|
1904 |
+
"reward_std": 0.35439443588256836,
|
1905 |
+
"rewards/accuracy_reward": 0.2734375,
|
1906 |
+
"rewards/format_reward": 0.93359375,
|
1907 |
+
"step": 146
|
1908 |
+
},
|
1909 |
+
{
|
1910 |
+
"completion_length": 106.19140625,
|
1911 |
+
"epoch": 0.6099585062240664,
|
1912 |
+
"grad_norm": 5.79280616422922,
|
1913 |
+
"kl": 0.125,
|
1914 |
+
"learning_rate": 3.900414937759336e-07,
|
1915 |
+
"loss": 0.005,
|
1916 |
+
"reward": 1.203125,
|
1917 |
+
"reward_std": 0.29194867610931396,
|
1918 |
+
"rewards/accuracy_reward": 0.2421875,
|
1919 |
+
"rewards/format_reward": 0.9609375,
|
1920 |
+
"step": 147
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"completion_length": 95.98828125,
|
1924 |
+
"epoch": 0.6141078838174274,
|
1925 |
+
"grad_norm": 5.4671468471721605,
|
1926 |
+
"kl": 0.10986328125,
|
1927 |
+
"learning_rate": 3.8589211618257263e-07,
|
1928 |
+
"loss": 0.0044,
|
1929 |
+
"reward": 1.22265625,
|
1930 |
+
"reward_std": 0.2797732949256897,
|
1931 |
+
"rewards/accuracy_reward": 0.23828125,
|
1932 |
+
"rewards/format_reward": 0.984375,
|
1933 |
+
"step": 148
|
1934 |
+
},
|
1935 |
+
{
|
1936 |
+
"completion_length": 88.03515625,
|
1937 |
+
"epoch": 0.6182572614107884,
|
1938 |
+
"grad_norm": 8.553849856772748,
|
1939 |
+
"kl": 0.11376953125,
|
1940 |
+
"learning_rate": 3.817427385892116e-07,
|
1941 |
+
"loss": 0.0045,
|
1942 |
+
"reward": 1.265625,
|
1943 |
+
"reward_std": 0.30274513363838196,
|
1944 |
+
"rewards/accuracy_reward": 0.30078125,
|
1945 |
+
"rewards/format_reward": 0.96484375,
|
1946 |
+
"step": 149
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"completion_length": 107.9140625,
|
1950 |
+
"epoch": 0.6224066390041494,
|
1951 |
+
"grad_norm": 4.437784186558576,
|
1952 |
+
"kl": 0.08349609375,
|
1953 |
+
"learning_rate": 3.775933609958506e-07,
|
1954 |
+
"loss": 0.0033,
|
1955 |
+
"reward": 1.2890625,
|
1956 |
+
"reward_std": 0.3589634895324707,
|
1957 |
+
"rewards/accuracy_reward": 0.3203125,
|
1958 |
+
"rewards/format_reward": 0.96875,
|
1959 |
+
"step": 150
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"completion_length": 91.25,
|
1963 |
+
"epoch": 0.6265560165975104,
|
1964 |
+
"grad_norm": 7.218676225343139,
|
1965 |
+
"kl": 0.09130859375,
|
1966 |
+
"learning_rate": 3.734439834024896e-07,
|
1967 |
+
"loss": 0.0037,
|
1968 |
+
"reward": 1.2265625,
|
1969 |
+
"reward_std": 0.2923767566680908,
|
1970 |
+
"rewards/accuracy_reward": 0.25390625,
|
1971 |
+
"rewards/format_reward": 0.97265625,
|
1972 |
+
"step": 151
|
1973 |
+
},
|
1974 |
+
{
|
1975 |
+
"completion_length": 102.1796875,
|
1976 |
+
"epoch": 0.6307053941908713,
|
1977 |
+
"grad_norm": 5.625873375289916,
|
1978 |
+
"kl": 0.08251953125,
|
1979 |
+
"learning_rate": 3.692946058091286e-07,
|
1980 |
+
"loss": 0.0033,
|
1981 |
+
"reward": 1.26953125,
|
1982 |
+
"reward_std": 0.28951701521873474,
|
1983 |
+
"rewards/accuracy_reward": 0.296875,
|
1984 |
+
"rewards/format_reward": 0.97265625,
|
1985 |
+
"step": 152
|
1986 |
+
},
|
1987 |
+
{
|
1988 |
+
"completion_length": 94.6875,
|
1989 |
+
"epoch": 0.6348547717842323,
|
1990 |
+
"grad_norm": 3.3046695270707143,
|
1991 |
+
"kl": 0.08740234375,
|
1992 |
+
"learning_rate": 3.6514522821576757e-07,
|
1993 |
+
"loss": 0.0035,
|
1994 |
+
"reward": 1.20703125,
|
1995 |
+
"reward_std": 0.3152885437011719,
|
1996 |
+
"rewards/accuracy_reward": 0.2421875,
|
1997 |
+
"rewards/format_reward": 0.96484375,
|
1998 |
+
"step": 153
|
1999 |
+
},
|
2000 |
+
{
|
2001 |
+
"completion_length": 93.8359375,
|
2002 |
+
"epoch": 0.6390041493775933,
|
2003 |
+
"grad_norm": 3.2380098166032174,
|
2004 |
+
"kl": 0.0927734375,
|
2005 |
+
"learning_rate": 3.6099585062240664e-07,
|
2006 |
+
"loss": 0.0037,
|
2007 |
+
"reward": 1.41015625,
|
2008 |
+
"reward_std": 0.3835912346839905,
|
2009 |
+
"rewards/accuracy_reward": 0.421875,
|
2010 |
+
"rewards/format_reward": 0.98828125,
|
2011 |
+
"step": 154
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"completion_length": 100.3828125,
|
2015 |
+
"epoch": 0.6431535269709544,
|
2016 |
+
"grad_norm": 3.3134631461874555,
|
2017 |
+
"kl": 0.091796875,
|
2018 |
+
"learning_rate": 3.5684647302904565e-07,
|
2019 |
+
"loss": 0.0037,
|
2020 |
+
"reward": 1.21875,
|
2021 |
+
"reward_std": 0.36876800656318665,
|
2022 |
+
"rewards/accuracy_reward": 0.25390625,
|
2023 |
+
"rewards/format_reward": 0.96484375,
|
2024 |
+
"step": 155
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"completion_length": 85.98828125,
|
2028 |
+
"epoch": 0.6473029045643154,
|
2029 |
+
"grad_norm": 8.891623678352106,
|
2030 |
+
"kl": 0.1044921875,
|
2031 |
+
"learning_rate": 3.5269709543568466e-07,
|
2032 |
+
"loss": 0.0042,
|
2033 |
+
"reward": 1.34375,
|
2034 |
+
"reward_std": 0.2681604027748108,
|
2035 |
+
"rewards/accuracy_reward": 0.3515625,
|
2036 |
+
"rewards/format_reward": 0.9921875,
|
2037 |
+
"step": 156
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"completion_length": 96.3125,
|
2041 |
+
"epoch": 0.6514522821576764,
|
2042 |
+
"grad_norm": 10.997826794239984,
|
2043 |
+
"kl": 0.103515625,
|
2044 |
+
"learning_rate": 3.485477178423236e-07,
|
2045 |
+
"loss": 0.0041,
|
2046 |
+
"reward": 1.30859375,
|
2047 |
+
"reward_std": 0.30442675948143005,
|
2048 |
+
"rewards/accuracy_reward": 0.33203125,
|
2049 |
+
"rewards/format_reward": 0.9765625,
|
2050 |
+
"step": 157
|
2051 |
+
},
|
2052 |
+
{
|
2053 |
+
"completion_length": 97.25,
|
2054 |
+
"epoch": 0.6556016597510373,
|
2055 |
+
"grad_norm": 15.501954515999833,
|
2056 |
+
"kl": 0.11181640625,
|
2057 |
+
"learning_rate": 3.443983402489626e-07,
|
2058 |
+
"loss": 0.0045,
|
2059 |
+
"reward": 1.24609375,
|
2060 |
+
"reward_std": 0.3243793845176697,
|
2061 |
+
"rewards/accuracy_reward": 0.2890625,
|
2062 |
+
"rewards/format_reward": 0.95703125,
|
2063 |
+
"step": 158
|
2064 |
+
},
|
2065 |
+
{
|
2066 |
+
"completion_length": 85.5546875,
|
2067 |
+
"epoch": 0.6597510373443983,
|
2068 |
+
"grad_norm": 15.699833790155175,
|
2069 |
+
"kl": 0.125,
|
2070 |
+
"learning_rate": 3.4024896265560163e-07,
|
2071 |
+
"loss": 0.005,
|
2072 |
+
"reward": 1.2421875,
|
2073 |
+
"reward_std": 0.2799358367919922,
|
2074 |
+
"rewards/accuracy_reward": 0.265625,
|
2075 |
+
"rewards/format_reward": 0.9765625,
|
2076 |
+
"step": 159
|
2077 |
+
},
|
2078 |
+
{
|
2079 |
+
"completion_length": 87.35546875,
|
2080 |
+
"epoch": 0.6639004149377593,
|
2081 |
+
"grad_norm": 21.010504513986813,
|
2082 |
+
"kl": 0.09423828125,
|
2083 |
+
"learning_rate": 3.360995850622407e-07,
|
2084 |
+
"loss": 0.0038,
|
2085 |
+
"reward": 1.1953125,
|
2086 |
+
"reward_std": 0.19621142745018005,
|
2087 |
+
"rewards/accuracy_reward": 0.203125,
|
2088 |
+
"rewards/format_reward": 0.9921875,
|
2089 |
+
"step": 160
|
2090 |
+
},
|
2091 |
+
{
|
2092 |
+
"completion_length": 79.609375,
|
2093 |
+
"epoch": 0.6680497925311203,
|
2094 |
+
"grad_norm": 15.76259223021215,
|
2095 |
+
"kl": 0.12890625,
|
2096 |
+
"learning_rate": 3.3195020746887966e-07,
|
2097 |
+
"loss": 0.0052,
|
2098 |
+
"reward": 1.28515625,
|
2099 |
+
"reward_std": 0.2734532654285431,
|
2100 |
+
"rewards/accuracy_reward": 0.30859375,
|
2101 |
+
"rewards/format_reward": 0.9765625,
|
2102 |
+
"step": 161
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"completion_length": 92.03515625,
|
2106 |
+
"epoch": 0.6721991701244814,
|
2107 |
+
"grad_norm": 10.404250366698443,
|
2108 |
+
"kl": 0.11865234375,
|
2109 |
+
"learning_rate": 3.2780082987551867e-07,
|
2110 |
+
"loss": 0.0047,
|
2111 |
+
"reward": 1.12890625,
|
2112 |
+
"reward_std": 0.13782215118408203,
|
2113 |
+
"rewards/accuracy_reward": 0.14453125,
|
2114 |
+
"rewards/format_reward": 0.984375,
|
2115 |
+
"step": 162
|
2116 |
+
},
|
2117 |
+
{
|
2118 |
+
"completion_length": 87.2421875,
|
2119 |
+
"epoch": 0.6763485477178424,
|
2120 |
+
"grad_norm": 14.551252603892712,
|
2121 |
+
"kl": 0.09912109375,
|
2122 |
+
"learning_rate": 3.236514522821577e-07,
|
2123 |
+
"loss": 0.004,
|
2124 |
+
"reward": 1.2421875,
|
2125 |
+
"reward_std": 0.27508556842803955,
|
2126 |
+
"rewards/accuracy_reward": 0.2578125,
|
2127 |
+
"rewards/format_reward": 0.984375,
|
2128 |
+
"step": 163
|
2129 |
+
},
|
2130 |
+
{
|
2131 |
+
"completion_length": 86.05078125,
|
2132 |
+
"epoch": 0.6804979253112033,
|
2133 |
+
"grad_norm": 19.037085273013254,
|
2134 |
+
"kl": 0.1513671875,
|
2135 |
+
"learning_rate": 3.1950207468879663e-07,
|
2136 |
+
"loss": 0.006,
|
2137 |
+
"reward": 1.39453125,
|
2138 |
+
"reward_std": 0.3236626982688904,
|
2139 |
+
"rewards/accuracy_reward": 0.40234375,
|
2140 |
+
"rewards/format_reward": 0.9921875,
|
2141 |
+
"step": 164
|
2142 |
+
},
|
2143 |
+
{
|
2144 |
+
"completion_length": 85.9609375,
|
2145 |
+
"epoch": 0.6846473029045643,
|
2146 |
+
"grad_norm": 43.15683291911658,
|
2147 |
+
"kl": 0.1416015625,
|
2148 |
+
"learning_rate": 3.1535269709543564e-07,
|
2149 |
+
"loss": 0.0057,
|
2150 |
+
"reward": 1.30859375,
|
2151 |
+
"reward_std": 0.2828989326953888,
|
2152 |
+
"rewards/accuracy_reward": 0.33984375,
|
2153 |
+
"rewards/format_reward": 0.96875,
|
2154 |
+
"step": 165
|
2155 |
+
},
|
2156 |
+
{
|
2157 |
+
"completion_length": 88.8671875,
|
2158 |
+
"epoch": 0.6887966804979253,
|
2159 |
+
"grad_norm": 10.572313497625037,
|
2160 |
+
"kl": 0.0927734375,
|
2161 |
+
"learning_rate": 3.1120331950207465e-07,
|
2162 |
+
"loss": 0.0037,
|
2163 |
+
"reward": 1.34375,
|
2164 |
+
"reward_std": 0.2745204567909241,
|
2165 |
+
"rewards/accuracy_reward": 0.359375,
|
2166 |
+
"rewards/format_reward": 0.984375,
|
2167 |
+
"step": 166
|
2168 |
+
},
|
2169 |
+
{
|
2170 |
+
"completion_length": 93.8125,
|
2171 |
+
"epoch": 0.6929460580912863,
|
2172 |
+
"grad_norm": 5.703362063681082,
|
2173 |
+
"kl": 0.103515625,
|
2174 |
+
"learning_rate": 3.070539419087137e-07,
|
2175 |
+
"loss": 0.0041,
|
2176 |
+
"reward": 1.1796875,
|
2177 |
+
"reward_std": 0.24057602882385254,
|
2178 |
+
"rewards/accuracy_reward": 0.1953125,
|
2179 |
+
"rewards/format_reward": 0.984375,
|
2180 |
+
"step": 167
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"completion_length": 88.37109375,
|
2184 |
+
"epoch": 0.6970954356846473,
|
2185 |
+
"grad_norm": 26054.768735426984,
|
2186 |
+
"kl": 3.203125,
|
2187 |
+
"learning_rate": 3.029045643153527e-07,
|
2188 |
+
"loss": 0.1277,
|
2189 |
+
"reward": 1.234375,
|
2190 |
+
"reward_std": 0.22063545882701874,
|
2191 |
+
"rewards/accuracy_reward": 0.25,
|
2192 |
+
"rewards/format_reward": 0.984375,
|
2193 |
+
"step": 168
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"completion_length": 94.67578125,
|
2197 |
+
"epoch": 0.7012448132780082,
|
2198 |
+
"grad_norm": 15.618598784917781,
|
2199 |
+
"kl": 0.10400390625,
|
2200 |
+
"learning_rate": 2.987551867219917e-07,
|
2201 |
+
"loss": 0.0042,
|
2202 |
+
"reward": 1.2890625,
|
2203 |
+
"reward_std": 0.27328526973724365,
|
2204 |
+
"rewards/accuracy_reward": 0.30078125,
|
2205 |
+
"rewards/format_reward": 0.98828125,
|
2206 |
+
"step": 169
|
2207 |
+
},
|
2208 |
+
{
|
2209 |
+
"completion_length": 99.70703125,
|
2210 |
+
"epoch": 0.7053941908713693,
|
2211 |
+
"grad_norm": 9.871899460079366,
|
2212 |
+
"kl": 0.09521484375,
|
2213 |
+
"learning_rate": 2.946058091286307e-07,
|
2214 |
+
"loss": 0.0038,
|
2215 |
+
"reward": 1.3671875,
|
2216 |
+
"reward_std": 0.3782796263694763,
|
2217 |
+
"rewards/accuracy_reward": 0.38671875,
|
2218 |
+
"rewards/format_reward": 0.98046875,
|
2219 |
+
"step": 170
|
2220 |
+
},
|
2221 |
+
{
|
2222 |
+
"completion_length": 80.71875,
|
2223 |
+
"epoch": 0.7095435684647303,
|
2224 |
+
"grad_norm": 18.124016004514953,
|
2225 |
+
"kl": 0.10546875,
|
2226 |
+
"learning_rate": 2.904564315352697e-07,
|
2227 |
+
"loss": 0.0042,
|
2228 |
+
"reward": 1.21875,
|
2229 |
+
"reward_std": 0.22859051823616028,
|
2230 |
+
"rewards/accuracy_reward": 0.2265625,
|
2231 |
+
"rewards/format_reward": 0.9921875,
|
2232 |
+
"step": 171
|
2233 |
+
},
|
2234 |
+
{
|
2235 |
+
"completion_length": 95.65625,
|
2236 |
+
"epoch": 0.7136929460580913,
|
2237 |
+
"grad_norm": 11.410453654872125,
|
2238 |
+
"kl": 0.08837890625,
|
2239 |
+
"learning_rate": 2.8630705394190866e-07,
|
2240 |
+
"loss": 0.0035,
|
2241 |
+
"reward": 1.265625,
|
2242 |
+
"reward_std": 0.3315829634666443,
|
2243 |
+
"rewards/accuracy_reward": 0.28515625,
|
2244 |
+
"rewards/format_reward": 0.98046875,
|
2245 |
+
"step": 172
|
2246 |
+
},
|
2247 |
+
{
|
2248 |
+
"completion_length": 84.04296875,
|
2249 |
+
"epoch": 0.7178423236514523,
|
2250 |
+
"grad_norm": 11.679683395107324,
|
2251 |
+
"kl": 0.1162109375,
|
2252 |
+
"learning_rate": 2.821576763485477e-07,
|
2253 |
+
"loss": 0.0046,
|
2254 |
+
"reward": 1.2578125,
|
2255 |
+
"reward_std": 0.2511623501777649,
|
2256 |
+
"rewards/accuracy_reward": 0.265625,
|
2257 |
+
"rewards/format_reward": 0.9921875,
|
2258 |
+
"step": 173
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"completion_length": 86.625,
|
2262 |
+
"epoch": 0.7219917012448133,
|
2263 |
+
"grad_norm": 12.07785638477025,
|
2264 |
+
"kl": 0.11083984375,
|
2265 |
+
"learning_rate": 2.7800829875518674e-07,
|
2266 |
+
"loss": 0.0044,
|
2267 |
+
"reward": 1.22265625,
|
2268 |
+
"reward_std": 0.17005667090415955,
|
2269 |
+
"rewards/accuracy_reward": 0.23828125,
|
2270 |
+
"rewards/format_reward": 0.984375,
|
2271 |
+
"step": 174
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"completion_length": 105.43359375,
|
2275 |
+
"epoch": 0.7261410788381742,
|
2276 |
+
"grad_norm": 8.597610653971167,
|
2277 |
+
"kl": 0.08984375,
|
2278 |
+
"learning_rate": 2.7385892116182575e-07,
|
2279 |
+
"loss": 0.0036,
|
2280 |
+
"reward": 1.29296875,
|
2281 |
+
"reward_std": 0.2580205202102661,
|
2282 |
+
"rewards/accuracy_reward": 0.3359375,
|
2283 |
+
"rewards/format_reward": 0.95703125,
|
2284 |
+
"step": 175
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"completion_length": 91.1171875,
|
2288 |
+
"epoch": 0.7302904564315352,
|
2289 |
+
"grad_norm": 10.411659860843175,
|
2290 |
+
"kl": 0.134765625,
|
2291 |
+
"learning_rate": 2.697095435684647e-07,
|
2292 |
+
"loss": 0.0054,
|
2293 |
+
"reward": 1.28125,
|
2294 |
+
"reward_std": 0.33533939719200134,
|
2295 |
+
"rewards/accuracy_reward": 0.30859375,
|
2296 |
+
"rewards/format_reward": 0.97265625,
|
2297 |
+
"step": 176
|
2298 |
+
},
|
2299 |
+
{
|
2300 |
+
"completion_length": 84.40625,
|
2301 |
+
"epoch": 0.7344398340248963,
|
2302 |
+
"grad_norm": 8.502997007157745,
|
2303 |
+
"kl": 0.09716796875,
|
2304 |
+
"learning_rate": 2.655601659751037e-07,
|
2305 |
+
"loss": 0.0039,
|
2306 |
+
"reward": 1.3203125,
|
2307 |
+
"reward_std": 0.303774893283844,
|
2308 |
+
"rewards/accuracy_reward": 0.3203125,
|
2309 |
+
"rewards/format_reward": 1.0,
|
2310 |
+
"step": 177
|
2311 |
+
},
|
2312 |
+
{
|
2313 |
+
"completion_length": 80.4296875,
|
2314 |
+
"epoch": 0.7385892116182573,
|
2315 |
+
"grad_norm": 10.088884677713335,
|
2316 |
+
"kl": 0.111328125,
|
2317 |
+
"learning_rate": 2.614107883817427e-07,
|
2318 |
+
"loss": 0.0045,
|
2319 |
+
"reward": 1.24609375,
|
2320 |
+
"reward_std": 0.27983221411705017,
|
2321 |
+
"rewards/accuracy_reward": 0.25390625,
|
2322 |
+
"rewards/format_reward": 0.9921875,
|
2323 |
+
"step": 178
|
2324 |
+
},
|
2325 |
+
{
|
2326 |
+
"completion_length": 102.3359375,
|
2327 |
+
"epoch": 0.7427385892116183,
|
2328 |
+
"grad_norm": 7.955033668582297,
|
2329 |
+
"kl": 0.0859375,
|
2330 |
+
"learning_rate": 2.572614107883817e-07,
|
2331 |
+
"loss": 0.0034,
|
2332 |
+
"reward": 1.2578125,
|
2333 |
+
"reward_std": 0.1971781998872757,
|
2334 |
+
"rewards/accuracy_reward": 0.26953125,
|
2335 |
+
"rewards/format_reward": 0.98828125,
|
2336 |
+
"step": 179
|
2337 |
+
},
|
2338 |
+
{
|
2339 |
+
"completion_length": 91.73046875,
|
2340 |
+
"epoch": 0.7468879668049793,
|
2341 |
+
"grad_norm": 3.07504994450314,
|
2342 |
+
"kl": 0.09716796875,
|
2343 |
+
"learning_rate": 2.5311203319502074e-07,
|
2344 |
+
"loss": 0.0039,
|
2345 |
+
"reward": 1.31640625,
|
2346 |
+
"reward_std": 0.23474639654159546,
|
2347 |
+
"rewards/accuracy_reward": 0.328125,
|
2348 |
+
"rewards/format_reward": 0.98828125,
|
2349 |
+
"step": 180
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"completion_length": 89.3984375,
|
2353 |
+
"epoch": 0.7510373443983402,
|
2354 |
+
"grad_norm": 5.922630830808792,
|
2355 |
+
"kl": 0.12060546875,
|
2356 |
+
"learning_rate": 2.4896265560165975e-07,
|
2357 |
+
"loss": 0.0048,
|
2358 |
+
"reward": 1.3828125,
|
2359 |
+
"reward_std": 0.2881060838699341,
|
2360 |
+
"rewards/accuracy_reward": 0.390625,
|
2361 |
+
"rewards/format_reward": 0.9921875,
|
2362 |
+
"step": 181
|
2363 |
+
},
|
2364 |
+
{
|
2365 |
+
"completion_length": 98.4296875,
|
2366 |
+
"epoch": 0.7551867219917012,
|
2367 |
+
"grad_norm": 5.611561605457396,
|
2368 |
+
"kl": 0.099609375,
|
2369 |
+
"learning_rate": 2.448132780082987e-07,
|
2370 |
+
"loss": 0.004,
|
2371 |
+
"reward": 1.1953125,
|
2372 |
+
"reward_std": 0.26515352725982666,
|
2373 |
+
"rewards/accuracy_reward": 0.21875,
|
2374 |
+
"rewards/format_reward": 0.9765625,
|
2375 |
+
"step": 182
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"completion_length": 95.12890625,
|
2379 |
+
"epoch": 0.7593360995850622,
|
2380 |
+
"grad_norm": 3.07356690502102,
|
2381 |
+
"kl": 0.1044921875,
|
2382 |
+
"learning_rate": 2.406639004149378e-07,
|
2383 |
+
"loss": 0.0042,
|
2384 |
+
"reward": 1.1640625,
|
2385 |
+
"reward_std": 0.23651200532913208,
|
2386 |
+
"rewards/accuracy_reward": 0.1953125,
|
2387 |
+
"rewards/format_reward": 0.96875,
|
2388 |
+
"step": 183
|
2389 |
+
},
|
2390 |
+
{
|
2391 |
+
"completion_length": 89.78125,
|
2392 |
+
"epoch": 0.7634854771784232,
|
2393 |
+
"grad_norm": 5.291830044415155,
|
2394 |
+
"kl": 0.107421875,
|
2395 |
+
"learning_rate": 2.3651452282157673e-07,
|
2396 |
+
"loss": 0.0043,
|
2397 |
+
"reward": 1.3046875,
|
2398 |
+
"reward_std": 0.2729809880256653,
|
2399 |
+
"rewards/accuracy_reward": 0.31640625,
|
2400 |
+
"rewards/format_reward": 0.98828125,
|
2401 |
+
"step": 184
|
2402 |
+
},
|
2403 |
+
{
|
2404 |
+
"completion_length": 96.91796875,
|
2405 |
+
"epoch": 0.7676348547717843,
|
2406 |
+
"grad_norm": 6.323500099655262,
|
2407 |
+
"kl": 0.0947265625,
|
2408 |
+
"learning_rate": 2.3236514522821577e-07,
|
2409 |
+
"loss": 0.0038,
|
2410 |
+
"reward": 1.3125,
|
2411 |
+
"reward_std": 0.29040926694869995,
|
2412 |
+
"rewards/accuracy_reward": 0.3359375,
|
2413 |
+
"rewards/format_reward": 0.9765625,
|
2414 |
+
"step": 185
|
2415 |
+
},
|
2416 |
+
{
|
2417 |
+
"completion_length": 85.296875,
|
2418 |
+
"epoch": 0.7717842323651453,
|
2419 |
+
"grad_norm": 38.28802098479183,
|
2420 |
+
"kl": 0.11083984375,
|
2421 |
+
"learning_rate": 2.2821576763485475e-07,
|
2422 |
+
"loss": 0.0044,
|
2423 |
+
"reward": 1.21875,
|
2424 |
+
"reward_std": 0.2543177008628845,
|
2425 |
+
"rewards/accuracy_reward": 0.24609375,
|
2426 |
+
"rewards/format_reward": 0.97265625,
|
2427 |
+
"step": 186
|
2428 |
+
},
|
2429 |
+
{
|
2430 |
+
"completion_length": 92.23046875,
|
2431 |
+
"epoch": 0.7759336099585062,
|
2432 |
+
"grad_norm": 3.3424642787888916,
|
2433 |
+
"kl": 0.09375,
|
2434 |
+
"learning_rate": 2.2406639004149376e-07,
|
2435 |
+
"loss": 0.0037,
|
2436 |
+
"reward": 1.30859375,
|
2437 |
+
"reward_std": 0.2530517578125,
|
2438 |
+
"rewards/accuracy_reward": 0.34765625,
|
2439 |
+
"rewards/format_reward": 0.9609375,
|
2440 |
+
"step": 187
|
2441 |
+
},
|
2442 |
+
{
|
2443 |
+
"completion_length": 99.76171875,
|
2444 |
+
"epoch": 0.7800829875518672,
|
2445 |
+
"grad_norm": 4.333334591818117,
|
2446 |
+
"kl": 0.0927734375,
|
2447 |
+
"learning_rate": 2.1991701244813277e-07,
|
2448 |
+
"loss": 0.0037,
|
2449 |
+
"reward": 1.37109375,
|
2450 |
+
"reward_std": 0.2535189092159271,
|
2451 |
+
"rewards/accuracy_reward": 0.390625,
|
2452 |
+
"rewards/format_reward": 0.98046875,
|
2453 |
+
"step": 188
|
2454 |
+
},
|
2455 |
+
{
|
2456 |
+
"completion_length": 94.41796875,
|
2457 |
+
"epoch": 0.7842323651452282,
|
2458 |
+
"grad_norm": 5.581784795886384,
|
2459 |
+
"kl": 0.10693359375,
|
2460 |
+
"learning_rate": 2.1576763485477178e-07,
|
2461 |
+
"loss": 0.0043,
|
2462 |
+
"reward": 1.23046875,
|
2463 |
+
"reward_std": 0.27355122566223145,
|
2464 |
+
"rewards/accuracy_reward": 0.26171875,
|
2465 |
+
"rewards/format_reward": 0.96875,
|
2466 |
+
"step": 189
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"completion_length": 99.2109375,
|
2470 |
+
"epoch": 0.7883817427385892,
|
2471 |
+
"grad_norm": 5.627278869348173,
|
2472 |
+
"kl": 0.09130859375,
|
2473 |
+
"learning_rate": 2.1161825726141077e-07,
|
2474 |
+
"loss": 0.0036,
|
2475 |
+
"reward": 1.30859375,
|
2476 |
+
"reward_std": 0.26744574308395386,
|
2477 |
+
"rewards/accuracy_reward": 0.34765625,
|
2478 |
+
"rewards/format_reward": 0.9609375,
|
2479 |
+
"step": 190
|
2480 |
+
},
|
2481 |
+
{
|
2482 |
+
"completion_length": 92.41796875,
|
2483 |
+
"epoch": 0.7925311203319502,
|
2484 |
+
"grad_norm": 5.131313447662913,
|
2485 |
+
"kl": 0.095703125,
|
2486 |
+
"learning_rate": 2.074688796680498e-07,
|
2487 |
+
"loss": 0.0038,
|
2488 |
+
"reward": 1.28515625,
|
2489 |
+
"reward_std": 0.3070391118526459,
|
2490 |
+
"rewards/accuracy_reward": 0.3046875,
|
2491 |
+
"rewards/format_reward": 0.98046875,
|
2492 |
+
"step": 191
|
2493 |
+
},
|
2494 |
+
{
|
2495 |
+
"completion_length": 100.51953125,
|
2496 |
+
"epoch": 0.7966804979253111,
|
2497 |
+
"grad_norm": 4.031558423340292,
|
2498 |
+
"kl": 0.0771484375,
|
2499 |
+
"learning_rate": 2.033195020746888e-07,
|
2500 |
+
"loss": 0.0031,
|
2501 |
+
"reward": 1.32421875,
|
2502 |
+
"reward_std": 0.220160573720932,
|
2503 |
+
"rewards/accuracy_reward": 0.34765625,
|
2504 |
+
"rewards/format_reward": 0.9765625,
|
2505 |
+
"step": 192
|
2506 |
+
},
|
2507 |
+
{
|
2508 |
+
"completion_length": 95.21484375,
|
2509 |
+
"epoch": 0.8008298755186722,
|
2510 |
+
"grad_norm": 7.853584345992108,
|
2511 |
+
"kl": 0.11669921875,
|
2512 |
+
"learning_rate": 1.9917012448132777e-07,
|
2513 |
+
"loss": 0.0047,
|
2514 |
+
"reward": 1.203125,
|
2515 |
+
"reward_std": 0.2865522503852844,
|
2516 |
+
"rewards/accuracy_reward": 0.234375,
|
2517 |
+
"rewards/format_reward": 0.96875,
|
2518 |
+
"step": 193
|
2519 |
+
},
|
2520 |
+
{
|
2521 |
+
"completion_length": 101.75,
|
2522 |
+
"epoch": 0.8049792531120332,
|
2523 |
+
"grad_norm": 2.8908709714738614,
|
2524 |
+
"kl": 0.08837890625,
|
2525 |
+
"learning_rate": 1.950207468879668e-07,
|
2526 |
+
"loss": 0.0035,
|
2527 |
+
"reward": 1.234375,
|
2528 |
+
"reward_std": 0.34296295046806335,
|
2529 |
+
"rewards/accuracy_reward": 0.2890625,
|
2530 |
+
"rewards/format_reward": 0.9453125,
|
2531 |
+
"step": 194
|
2532 |
+
},
|
2533 |
+
{
|
2534 |
+
"completion_length": 90.21875,
|
2535 |
+
"epoch": 0.8091286307053942,
|
2536 |
+
"grad_norm": 2.098330717758711,
|
2537 |
+
"kl": 0.09228515625,
|
2538 |
+
"learning_rate": 1.908713692946058e-07,
|
2539 |
+
"loss": 0.0037,
|
2540 |
+
"reward": 1.2265625,
|
2541 |
+
"reward_std": 0.2507816553115845,
|
2542 |
+
"rewards/accuracy_reward": 0.23828125,
|
2543 |
+
"rewards/format_reward": 0.98828125,
|
2544 |
+
"step": 195
|
2545 |
+
},
|
2546 |
+
{
|
2547 |
+
"completion_length": 109.3828125,
|
2548 |
+
"epoch": 0.8132780082987552,
|
2549 |
+
"grad_norm": 2349.258527115438,
|
2550 |
+
"kl": 6.90625,
|
2551 |
+
"learning_rate": 1.867219917012448e-07,
|
2552 |
+
"loss": 0.2761,
|
2553 |
+
"reward": 1.21484375,
|
2554 |
+
"reward_std": 0.264018177986145,
|
2555 |
+
"rewards/accuracy_reward": 0.2421875,
|
2556 |
+
"rewards/format_reward": 0.97265625,
|
2557 |
+
"step": 196
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"completion_length": 96.6640625,
|
2561 |
+
"epoch": 0.8174273858921162,
|
2562 |
+
"grad_norm": 16.535509899854667,
|
2563 |
+
"kl": 0.1025390625,
|
2564 |
+
"learning_rate": 1.8257261410788379e-07,
|
2565 |
+
"loss": 0.0041,
|
2566 |
+
"reward": 1.24609375,
|
2567 |
+
"reward_std": 0.3564358055591583,
|
2568 |
+
"rewards/accuracy_reward": 0.29296875,
|
2569 |
+
"rewards/format_reward": 0.953125,
|
2570 |
+
"step": 197
|
2571 |
+
},
|
2572 |
+
{
|
2573 |
+
"completion_length": 88.40234375,
|
2574 |
+
"epoch": 0.8215767634854771,
|
2575 |
+
"grad_norm": 7.009787448907159,
|
2576 |
+
"kl": 0.11181640625,
|
2577 |
+
"learning_rate": 1.7842323651452282e-07,
|
2578 |
+
"loss": 0.0045,
|
2579 |
+
"reward": 1.37890625,
|
2580 |
+
"reward_std": 0.3150339424610138,
|
2581 |
+
"rewards/accuracy_reward": 0.41015625,
|
2582 |
+
"rewards/format_reward": 0.96875,
|
2583 |
+
"step": 198
|
2584 |
+
},
|
2585 |
+
{
|
2586 |
+
"completion_length": 101.0,
|
2587 |
+
"epoch": 0.8257261410788381,
|
2588 |
+
"grad_norm": 1.4173394259733807,
|
2589 |
+
"kl": 0.08544921875,
|
2590 |
+
"learning_rate": 1.742738589211618e-07,
|
2591 |
+
"loss": 0.0034,
|
2592 |
+
"reward": 1.2265625,
|
2593 |
+
"reward_std": 0.2616804838180542,
|
2594 |
+
"rewards/accuracy_reward": 0.2578125,
|
2595 |
+
"rewards/format_reward": 0.96875,
|
2596 |
+
"step": 199
|
2597 |
+
},
|
2598 |
+
{
|
2599 |
+
"completion_length": 87.8828125,
|
2600 |
+
"epoch": 0.8298755186721992,
|
2601 |
+
"grad_norm": 4.4140973894843825,
|
2602 |
+
"kl": 0.09228515625,
|
2603 |
+
"learning_rate": 1.7012448132780082e-07,
|
2604 |
+
"loss": 0.0037,
|
2605 |
+
"reward": 1.32421875,
|
2606 |
+
"reward_std": 0.2538624703884125,
|
2607 |
+
"rewards/accuracy_reward": 0.328125,
|
2608 |
+
"rewards/format_reward": 0.99609375,
|
2609 |
+
"step": 200
|
2610 |
+
},
|
2611 |
+
{
|
2612 |
+
"completion_length": 99.31640625,
|
2613 |
+
"epoch": 0.8340248962655602,
|
2614 |
+
"grad_norm": 2.698781998865515,
|
2615 |
+
"kl": 0.07275390625,
|
2616 |
+
"learning_rate": 1.6597510373443983e-07,
|
2617 |
+
"loss": 0.0029,
|
2618 |
+
"reward": 1.2734375,
|
2619 |
+
"reward_std": 0.3443642854690552,
|
2620 |
+
"rewards/accuracy_reward": 0.3203125,
|
2621 |
+
"rewards/format_reward": 0.953125,
|
2622 |
+
"step": 201
|
2623 |
+
},
|
2624 |
+
{
|
2625 |
+
"completion_length": 101.63671875,
|
2626 |
+
"epoch": 0.8381742738589212,
|
2627 |
+
"grad_norm": 3.34751147226265,
|
2628 |
+
"kl": 0.09619140625,
|
2629 |
+
"learning_rate": 1.6182572614107884e-07,
|
2630 |
+
"loss": 0.0038,
|
2631 |
+
"reward": 1.3203125,
|
2632 |
+
"reward_std": 0.32434993982315063,
|
2633 |
+
"rewards/accuracy_reward": 0.34375,
|
2634 |
+
"rewards/format_reward": 0.9765625,
|
2635 |
+
"step": 202
|
2636 |
+
},
|
2637 |
+
{
|
2638 |
+
"completion_length": 95.63671875,
|
2639 |
+
"epoch": 0.8423236514522822,
|
2640 |
+
"grad_norm": 1.9689029980122599,
|
2641 |
+
"kl": 0.08056640625,
|
2642 |
+
"learning_rate": 1.5767634854771782e-07,
|
2643 |
+
"loss": 0.0032,
|
2644 |
+
"reward": 1.234375,
|
2645 |
+
"reward_std": 0.2784101366996765,
|
2646 |
+
"rewards/accuracy_reward": 0.25,
|
2647 |
+
"rewards/format_reward": 0.984375,
|
2648 |
+
"step": 203
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"completion_length": 98.484375,
|
2652 |
+
"epoch": 0.8464730290456431,
|
2653 |
+
"grad_norm": 3.570750352423554,
|
2654 |
+
"kl": 0.0830078125,
|
2655 |
+
"learning_rate": 1.5352697095435686e-07,
|
2656 |
+
"loss": 0.0033,
|
2657 |
+
"reward": 1.3125,
|
2658 |
+
"reward_std": 0.32842758297920227,
|
2659 |
+
"rewards/accuracy_reward": 0.328125,
|
2660 |
+
"rewards/format_reward": 0.984375,
|
2661 |
+
"step": 204
|
2662 |
+
},
|
2663 |
+
{
|
2664 |
+
"completion_length": 93.0390625,
|
2665 |
+
"epoch": 0.8506224066390041,
|
2666 |
+
"grad_norm": 3.372213441880041,
|
2667 |
+
"kl": 0.076171875,
|
2668 |
+
"learning_rate": 1.4937759336099584e-07,
|
2669 |
+
"loss": 0.0031,
|
2670 |
+
"reward": 1.24609375,
|
2671 |
+
"reward_std": 0.2814468443393707,
|
2672 |
+
"rewards/accuracy_reward": 0.265625,
|
2673 |
+
"rewards/format_reward": 0.98046875,
|
2674 |
+
"step": 205
|
2675 |
+
},
|
2676 |
+
{
|
2677 |
+
"completion_length": 100.23046875,
|
2678 |
+
"epoch": 0.8547717842323651,
|
2679 |
+
"grad_norm": 3.861719509898381,
|
2680 |
+
"kl": 0.09375,
|
2681 |
+
"learning_rate": 1.4522821576763485e-07,
|
2682 |
+
"loss": 0.0038,
|
2683 |
+
"reward": 1.26953125,
|
2684 |
+
"reward_std": 0.31658661365509033,
|
2685 |
+
"rewards/accuracy_reward": 0.3125,
|
2686 |
+
"rewards/format_reward": 0.95703125,
|
2687 |
+
"step": 206
|
2688 |
+
},
|
2689 |
+
{
|
2690 |
+
"completion_length": 89.0625,
|
2691 |
+
"epoch": 0.8589211618257261,
|
2692 |
+
"grad_norm": 6.172287251013444,
|
2693 |
+
"kl": 0.087890625,
|
2694 |
+
"learning_rate": 1.4107883817427386e-07,
|
2695 |
+
"loss": 0.0035,
|
2696 |
+
"reward": 1.3046875,
|
2697 |
+
"reward_std": 0.25658145546913147,
|
2698 |
+
"rewards/accuracy_reward": 0.31640625,
|
2699 |
+
"rewards/format_reward": 0.98828125,
|
2700 |
+
"step": 207
|
2701 |
+
},
|
2702 |
+
{
|
2703 |
+
"completion_length": 98.75390625,
|
2704 |
+
"epoch": 0.8630705394190872,
|
2705 |
+
"grad_norm": 12.466091184278106,
|
2706 |
+
"kl": 0.09521484375,
|
2707 |
+
"learning_rate": 1.3692946058091287e-07,
|
2708 |
+
"loss": 0.0038,
|
2709 |
+
"reward": 1.1796875,
|
2710 |
+
"reward_std": 0.28974291682243347,
|
2711 |
+
"rewards/accuracy_reward": 0.21484375,
|
2712 |
+
"rewards/format_reward": 0.96484375,
|
2713 |
+
"step": 208
|
2714 |
+
},
|
2715 |
+
{
|
2716 |
+
"completion_length": 85.42578125,
|
2717 |
+
"epoch": 0.8672199170124482,
|
2718 |
+
"grad_norm": 3.393938200300927,
|
2719 |
+
"kl": 0.09033203125,
|
2720 |
+
"learning_rate": 1.3278008298755186e-07,
|
2721 |
+
"loss": 0.0036,
|
2722 |
+
"reward": 1.41015625,
|
2723 |
+
"reward_std": 0.26117590069770813,
|
2724 |
+
"rewards/accuracy_reward": 0.4296875,
|
2725 |
+
"rewards/format_reward": 0.98046875,
|
2726 |
+
"step": 209
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"completion_length": 106.23046875,
|
2730 |
+
"epoch": 0.8713692946058091,
|
2731 |
+
"grad_norm": 6.618744333693797,
|
2732 |
+
"kl": 0.0732421875,
|
2733 |
+
"learning_rate": 1.2863070539419084e-07,
|
2734 |
+
"loss": 0.0029,
|
2735 |
+
"reward": 1.27734375,
|
2736 |
+
"reward_std": 0.3217734694480896,
|
2737 |
+
"rewards/accuracy_reward": 0.29296875,
|
2738 |
+
"rewards/format_reward": 0.984375,
|
2739 |
+
"step": 210
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"completion_length": 94.83984375,
|
2743 |
+
"epoch": 0.8755186721991701,
|
2744 |
+
"grad_norm": 3.712536977931616,
|
2745 |
+
"kl": 0.0908203125,
|
2746 |
+
"learning_rate": 1.2448132780082988e-07,
|
2747 |
+
"loss": 0.0036,
|
2748 |
+
"reward": 1.34375,
|
2749 |
+
"reward_std": 0.30023884773254395,
|
2750 |
+
"rewards/accuracy_reward": 0.36328125,
|
2751 |
+
"rewards/format_reward": 0.98046875,
|
2752 |
+
"step": 211
|
2753 |
+
},
|
2754 |
+
{
|
2755 |
+
"completion_length": 101.30078125,
|
2756 |
+
"epoch": 0.8796680497925311,
|
2757 |
+
"grad_norm": 3.481823321693955,
|
2758 |
+
"kl": 0.0869140625,
|
2759 |
+
"learning_rate": 1.203319502074689e-07,
|
2760 |
+
"loss": 0.0035,
|
2761 |
+
"reward": 1.26953125,
|
2762 |
+
"reward_std": 0.32253044843673706,
|
2763 |
+
"rewards/accuracy_reward": 0.30078125,
|
2764 |
+
"rewards/format_reward": 0.96875,
|
2765 |
+
"step": 212
|
2766 |
+
},
|
2767 |
+
{
|
2768 |
+
"completion_length": 95.96484375,
|
2769 |
+
"epoch": 0.8838174273858921,
|
2770 |
+
"grad_norm": 2.4104826815675646,
|
2771 |
+
"kl": 0.0703125,
|
2772 |
+
"learning_rate": 1.1618257261410788e-07,
|
2773 |
+
"loss": 0.0028,
|
2774 |
+
"reward": 1.1796875,
|
2775 |
+
"reward_std": 0.251188188791275,
|
2776 |
+
"rewards/accuracy_reward": 0.203125,
|
2777 |
+
"rewards/format_reward": 0.9765625,
|
2778 |
+
"step": 213
|
2779 |
+
},
|
2780 |
+
{
|
2781 |
+
"completion_length": 98.62109375,
|
2782 |
+
"epoch": 0.8879668049792531,
|
2783 |
+
"grad_norm": 2.2792919284740303,
|
2784 |
+
"kl": 0.07568359375,
|
2785 |
+
"learning_rate": 1.1203319502074688e-07,
|
2786 |
+
"loss": 0.003,
|
2787 |
+
"reward": 1.3203125,
|
2788 |
+
"reward_std": 0.31220242381095886,
|
2789 |
+
"rewards/accuracy_reward": 0.3359375,
|
2790 |
+
"rewards/format_reward": 0.984375,
|
2791 |
+
"step": 214
|
2792 |
+
},
|
2793 |
+
{
|
2794 |
+
"completion_length": 100.05078125,
|
2795 |
+
"epoch": 0.8921161825726142,
|
2796 |
+
"grad_norm": 4.276254804277667,
|
2797 |
+
"kl": 0.08349609375,
|
2798 |
+
"learning_rate": 1.0788381742738589e-07,
|
2799 |
+
"loss": 0.0033,
|
2800 |
+
"reward": 1.23828125,
|
2801 |
+
"reward_std": 0.2676299810409546,
|
2802 |
+
"rewards/accuracy_reward": 0.265625,
|
2803 |
+
"rewards/format_reward": 0.97265625,
|
2804 |
+
"step": 215
|
2805 |
+
},
|
2806 |
+
{
|
2807 |
+
"completion_length": 93.05078125,
|
2808 |
+
"epoch": 0.8962655601659751,
|
2809 |
+
"grad_norm": 3.5229171032652435,
|
2810 |
+
"kl": 0.0986328125,
|
2811 |
+
"learning_rate": 1.037344398340249e-07,
|
2812 |
+
"loss": 0.004,
|
2813 |
+
"reward": 1.25,
|
2814 |
+
"reward_std": 0.31738150119781494,
|
2815 |
+
"rewards/accuracy_reward": 0.2734375,
|
2816 |
+
"rewards/format_reward": 0.9765625,
|
2817 |
+
"step": 216
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"completion_length": 94.16015625,
|
2821 |
+
"epoch": 0.9004149377593361,
|
2822 |
+
"grad_norm": 11.757057583856977,
|
2823 |
+
"kl": 0.078125,
|
2824 |
+
"learning_rate": 9.958506224066389e-08,
|
2825 |
+
"loss": 0.0031,
|
2826 |
+
"reward": 1.21875,
|
2827 |
+
"reward_std": 0.24235805869102478,
|
2828 |
+
"rewards/accuracy_reward": 0.23046875,
|
2829 |
+
"rewards/format_reward": 0.98828125,
|
2830 |
+
"step": 217
|
2831 |
+
},
|
2832 |
+
{
|
2833 |
+
"completion_length": 85.44140625,
|
2834 |
+
"epoch": 0.9045643153526971,
|
2835 |
+
"grad_norm": 1.9091471037010437,
|
2836 |
+
"kl": 0.103515625,
|
2837 |
+
"learning_rate": 9.54356846473029e-08,
|
2838 |
+
"loss": 0.0041,
|
2839 |
+
"reward": 1.1953125,
|
2840 |
+
"reward_std": 0.2225247025489807,
|
2841 |
+
"rewards/accuracy_reward": 0.2109375,
|
2842 |
+
"rewards/format_reward": 0.984375,
|
2843 |
+
"step": 218
|
2844 |
+
},
|
2845 |
+
{
|
2846 |
+
"completion_length": 96.31640625,
|
2847 |
+
"epoch": 0.9087136929460581,
|
2848 |
+
"grad_norm": 3.0098424472404544,
|
2849 |
+
"kl": 0.07568359375,
|
2850 |
+
"learning_rate": 9.128630705394189e-08,
|
2851 |
+
"loss": 0.003,
|
2852 |
+
"reward": 1.31640625,
|
2853 |
+
"reward_std": 0.3151411712169647,
|
2854 |
+
"rewards/accuracy_reward": 0.3359375,
|
2855 |
+
"rewards/format_reward": 0.98046875,
|
2856 |
+
"step": 219
|
2857 |
+
},
|
2858 |
+
{
|
2859 |
+
"completion_length": 102.65234375,
|
2860 |
+
"epoch": 0.9128630705394191,
|
2861 |
+
"grad_norm": 4.643564268046483,
|
2862 |
+
"kl": 0.0888671875,
|
2863 |
+
"learning_rate": 8.71369294605809e-08,
|
2864 |
+
"loss": 0.0036,
|
2865 |
+
"reward": 1.15625,
|
2866 |
+
"reward_std": 0.2785586714744568,
|
2867 |
+
"rewards/accuracy_reward": 0.19921875,
|
2868 |
+
"rewards/format_reward": 0.95703125,
|
2869 |
+
"step": 220
|
2870 |
+
},
|
2871 |
+
{
|
2872 |
+
"completion_length": 93.80859375,
|
2873 |
+
"epoch": 0.91701244813278,
|
2874 |
+
"grad_norm": 4.410133029194588,
|
2875 |
+
"kl": 0.06982421875,
|
2876 |
+
"learning_rate": 8.298755186721991e-08,
|
2877 |
+
"loss": 0.0028,
|
2878 |
+
"reward": 1.24609375,
|
2879 |
+
"reward_std": 0.20357662439346313,
|
2880 |
+
"rewards/accuracy_reward": 0.24609375,
|
2881 |
+
"rewards/format_reward": 1.0,
|
2882 |
+
"step": 221
|
2883 |
+
},
|
2884 |
+
{
|
2885 |
+
"completion_length": 101.15234375,
|
2886 |
+
"epoch": 0.921161825726141,
|
2887 |
+
"grad_norm": 2.904709180452436,
|
2888 |
+
"kl": 0.08154296875,
|
2889 |
+
"learning_rate": 7.883817427385891e-08,
|
2890 |
+
"loss": 0.0033,
|
2891 |
+
"reward": 1.19140625,
|
2892 |
+
"reward_std": 0.2115919589996338,
|
2893 |
+
"rewards/accuracy_reward": 0.21484375,
|
2894 |
+
"rewards/format_reward": 0.9765625,
|
2895 |
+
"step": 222
|
2896 |
+
},
|
2897 |
+
{
|
2898 |
+
"completion_length": 96.94140625,
|
2899 |
+
"epoch": 0.9253112033195021,
|
2900 |
+
"grad_norm": 4.354536159655136,
|
2901 |
+
"kl": 0.0751953125,
|
2902 |
+
"learning_rate": 7.468879668049792e-08,
|
2903 |
+
"loss": 0.003,
|
2904 |
+
"reward": 1.24609375,
|
2905 |
+
"reward_std": 0.21827393770217896,
|
2906 |
+
"rewards/accuracy_reward": 0.26953125,
|
2907 |
+
"rewards/format_reward": 0.9765625,
|
2908 |
+
"step": 223
|
2909 |
+
},
|
2910 |
+
{
|
2911 |
+
"completion_length": 93.47265625,
|
2912 |
+
"epoch": 0.9294605809128631,
|
2913 |
+
"grad_norm": 6.600006221648485,
|
2914 |
+
"kl": 0.12451171875,
|
2915 |
+
"learning_rate": 7.053941908713693e-08,
|
2916 |
+
"loss": 0.005,
|
2917 |
+
"reward": 1.15625,
|
2918 |
+
"reward_std": 0.2866210341453552,
|
2919 |
+
"rewards/accuracy_reward": 0.2109375,
|
2920 |
+
"rewards/format_reward": 0.9453125,
|
2921 |
+
"step": 224
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"completion_length": 101.734375,
|
2925 |
+
"epoch": 0.9336099585062241,
|
2926 |
+
"grad_norm": 2.59933094148854,
|
2927 |
+
"kl": 0.0810546875,
|
2928 |
+
"learning_rate": 6.639004149377593e-08,
|
2929 |
+
"loss": 0.0032,
|
2930 |
+
"reward": 1.31640625,
|
2931 |
+
"reward_std": 0.34125426411628723,
|
2932 |
+
"rewards/accuracy_reward": 0.33984375,
|
2933 |
+
"rewards/format_reward": 0.9765625,
|
2934 |
+
"step": 225
|
2935 |
+
},
|
2936 |
+
{
|
2937 |
+
"completion_length": 91.54296875,
|
2938 |
+
"epoch": 0.9377593360995851,
|
2939 |
+
"grad_norm": 2.8944936970951853,
|
2940 |
+
"kl": 0.0947265625,
|
2941 |
+
"learning_rate": 6.224066390041494e-08,
|
2942 |
+
"loss": 0.0038,
|
2943 |
+
"reward": 1.28515625,
|
2944 |
+
"reward_std": 0.2791742980480194,
|
2945 |
+
"rewards/accuracy_reward": 0.3046875,
|
2946 |
+
"rewards/format_reward": 0.98046875,
|
2947 |
+
"step": 226
|
2948 |
+
},
|
2949 |
+
{
|
2950 |
+
"completion_length": 103.78125,
|
2951 |
+
"epoch": 0.941908713692946,
|
2952 |
+
"grad_norm": 4.590255163351441,
|
2953 |
+
"kl": 0.0830078125,
|
2954 |
+
"learning_rate": 5.809128630705394e-08,
|
2955 |
+
"loss": 0.0033,
|
2956 |
+
"reward": 1.25390625,
|
2957 |
+
"reward_std": 0.3090318739414215,
|
2958 |
+
"rewards/accuracy_reward": 0.29296875,
|
2959 |
+
"rewards/format_reward": 0.9609375,
|
2960 |
+
"step": 227
|
2961 |
+
},
|
2962 |
+
{
|
2963 |
+
"completion_length": 94.26953125,
|
2964 |
+
"epoch": 0.946058091286307,
|
2965 |
+
"grad_norm": 2.1761507216115255,
|
2966 |
+
"kl": 0.09423828125,
|
2967 |
+
"learning_rate": 5.3941908713692946e-08,
|
2968 |
+
"loss": 0.0038,
|
2969 |
+
"reward": 1.2421875,
|
2970 |
+
"reward_std": 0.23839645087718964,
|
2971 |
+
"rewards/accuracy_reward": 0.28515625,
|
2972 |
+
"rewards/format_reward": 0.95703125,
|
2973 |
+
"step": 228
|
2974 |
+
},
|
2975 |
+
{
|
2976 |
+
"completion_length": 97.3984375,
|
2977 |
+
"epoch": 0.950207468879668,
|
2978 |
+
"grad_norm": 4.778688881591497,
|
2979 |
+
"kl": 0.09375,
|
2980 |
+
"learning_rate": 4.979253112033194e-08,
|
2981 |
+
"loss": 0.0037,
|
2982 |
+
"reward": 1.2421875,
|
2983 |
+
"reward_std": 0.24435341358184814,
|
2984 |
+
"rewards/accuracy_reward": 0.265625,
|
2985 |
+
"rewards/format_reward": 0.9765625,
|
2986 |
+
"step": 229
|
2987 |
+
},
|
2988 |
+
{
|
2989 |
+
"completion_length": 103.171875,
|
2990 |
+
"epoch": 0.9543568464730291,
|
2991 |
+
"grad_norm": 2.9856087811245935,
|
2992 |
+
"kl": 0.08935546875,
|
2993 |
+
"learning_rate": 4.5643153526970947e-08,
|
2994 |
+
"loss": 0.0036,
|
2995 |
+
"reward": 1.34765625,
|
2996 |
+
"reward_std": 0.31364643573760986,
|
2997 |
+
"rewards/accuracy_reward": 0.37890625,
|
2998 |
+
"rewards/format_reward": 0.96875,
|
2999 |
+
"step": 230
|
3000 |
+
},
|
3001 |
+
{
|
3002 |
+
"completion_length": 96.609375,
|
3003 |
+
"epoch": 0.9585062240663901,
|
3004 |
+
"grad_norm": 4.58965397807011,
|
3005 |
+
"kl": 0.076171875,
|
3006 |
+
"learning_rate": 4.149377593360996e-08,
|
3007 |
+
"loss": 0.0031,
|
3008 |
+
"reward": 1.2265625,
|
3009 |
+
"reward_std": 0.2816419303417206,
|
3010 |
+
"rewards/accuracy_reward": 0.24609375,
|
3011 |
+
"rewards/format_reward": 0.98046875,
|
3012 |
+
"step": 231
|
3013 |
+
},
|
3014 |
+
{
|
3015 |
+
"completion_length": 106.4140625,
|
3016 |
+
"epoch": 0.9626556016597511,
|
3017 |
+
"grad_norm": 4.259706500288727,
|
3018 |
+
"kl": 0.083984375,
|
3019 |
+
"learning_rate": 3.734439834024896e-08,
|
3020 |
+
"loss": 0.0034,
|
3021 |
+
"reward": 1.19921875,
|
3022 |
+
"reward_std": 0.2757681608200073,
|
3023 |
+
"rewards/accuracy_reward": 0.24609375,
|
3024 |
+
"rewards/format_reward": 0.953125,
|
3025 |
+
"step": 232
|
3026 |
+
},
|
3027 |
+
{
|
3028 |
+
"completion_length": 101.8203125,
|
3029 |
+
"epoch": 0.966804979253112,
|
3030 |
+
"grad_norm": 4.0534911383906085,
|
3031 |
+
"kl": 0.078125,
|
3032 |
+
"learning_rate": 3.3195020746887964e-08,
|
3033 |
+
"loss": 0.0031,
|
3034 |
+
"reward": 1.26953125,
|
3035 |
+
"reward_std": 0.2769816219806671,
|
3036 |
+
"rewards/accuracy_reward": 0.3125,
|
3037 |
+
"rewards/format_reward": 0.95703125,
|
3038 |
+
"step": 233
|
3039 |
+
},
|
3040 |
+
{
|
3041 |
+
"completion_length": 102.25,
|
3042 |
+
"epoch": 0.970954356846473,
|
3043 |
+
"grad_norm": 4.9799320704360825,
|
3044 |
+
"kl": 0.08837890625,
|
3045 |
+
"learning_rate": 2.904564315352697e-08,
|
3046 |
+
"loss": 0.0035,
|
3047 |
+
"reward": 1.29296875,
|
3048 |
+
"reward_std": 0.3803676962852478,
|
3049 |
+
"rewards/accuracy_reward": 0.33984375,
|
3050 |
+
"rewards/format_reward": 0.953125,
|
3051 |
+
"step": 234
|
3052 |
+
},
|
3053 |
+
{
|
3054 |
+
"completion_length": 84.4921875,
|
3055 |
+
"epoch": 0.975103734439834,
|
3056 |
+
"grad_norm": 7.36284248917279,
|
3057 |
+
"kl": 0.11181640625,
|
3058 |
+
"learning_rate": 2.489626556016597e-08,
|
3059 |
+
"loss": 0.0045,
|
3060 |
+
"reward": 1.23828125,
|
3061 |
+
"reward_std": 0.26031655073165894,
|
3062 |
+
"rewards/accuracy_reward": 0.26171875,
|
3063 |
+
"rewards/format_reward": 0.9765625,
|
3064 |
+
"step": 235
|
3065 |
+
},
|
3066 |
+
{
|
3067 |
+
"completion_length": 101.4765625,
|
3068 |
+
"epoch": 0.979253112033195,
|
3069 |
+
"grad_norm": 4.233011578281721,
|
3070 |
+
"kl": 0.080078125,
|
3071 |
+
"learning_rate": 2.074688796680498e-08,
|
3072 |
+
"loss": 0.0032,
|
3073 |
+
"reward": 1.3203125,
|
3074 |
+
"reward_std": 0.3218572735786438,
|
3075 |
+
"rewards/accuracy_reward": 0.33984375,
|
3076 |
+
"rewards/format_reward": 0.98046875,
|
3077 |
+
"step": 236
|
3078 |
+
},
|
3079 |
+
{
|
3080 |
+
"completion_length": 94.22265625,
|
3081 |
+
"epoch": 0.983402489626556,
|
3082 |
+
"grad_norm": 2.619642461579283,
|
3083 |
+
"kl": 0.08837890625,
|
3084 |
+
"learning_rate": 1.6597510373443982e-08,
|
3085 |
+
"loss": 0.0035,
|
3086 |
+
"reward": 1.2890625,
|
3087 |
+
"reward_std": 0.32815423607826233,
|
3088 |
+
"rewards/accuracy_reward": 0.3203125,
|
3089 |
+
"rewards/format_reward": 0.96875,
|
3090 |
+
"step": 237
|
3091 |
+
},
|
3092 |
+
{
|
3093 |
+
"completion_length": 97.37890625,
|
3094 |
+
"epoch": 0.9875518672199171,
|
3095 |
+
"grad_norm": 3.912385420123859,
|
3096 |
+
"kl": 0.095703125,
|
3097 |
+
"learning_rate": 1.2448132780082986e-08,
|
3098 |
+
"loss": 0.0038,
|
3099 |
+
"reward": 1.2109375,
|
3100 |
+
"reward_std": 0.2913069427013397,
|
3101 |
+
"rewards/accuracy_reward": 0.2578125,
|
3102 |
+
"rewards/format_reward": 0.953125,
|
3103 |
+
"step": 238
|
3104 |
+
},
|
3105 |
+
{
|
3106 |
+
"completion_length": 106.0234375,
|
3107 |
+
"epoch": 0.991701244813278,
|
3108 |
+
"grad_norm": 3.1256612206439294,
|
3109 |
+
"kl": 0.08935546875,
|
3110 |
+
"learning_rate": 8.298755186721991e-09,
|
3111 |
+
"loss": 0.0036,
|
3112 |
+
"reward": 1.2421875,
|
3113 |
+
"reward_std": 0.2937677502632141,
|
3114 |
+
"rewards/accuracy_reward": 0.2734375,
|
3115 |
+
"rewards/format_reward": 0.96875,
|
3116 |
+
"step": 239
|
3117 |
+
},
|
3118 |
+
{
|
3119 |
+
"completion_length": 98.15625,
|
3120 |
+
"epoch": 0.995850622406639,
|
3121 |
+
"grad_norm": 3.5682820113500076,
|
3122 |
+
"kl": 0.08740234375,
|
3123 |
+
"learning_rate": 4.1493775933609955e-09,
|
3124 |
+
"loss": 0.0035,
|
3125 |
+
"reward": 1.29296875,
|
3126 |
+
"reward_std": 0.3183509409427643,
|
3127 |
+
"rewards/accuracy_reward": 0.3359375,
|
3128 |
+
"rewards/format_reward": 0.95703125,
|
3129 |
+
"step": 240
|
3130 |
+
},
|
3131 |
+
{
|
3132 |
+
"completion_length": 77.55555725097656,
|
3133 |
+
"epoch": 1.0,
|
3134 |
+
"grad_norm": 4.43221819261977,
|
3135 |
+
"kl": 0.12255859375,
|
3136 |
+
"learning_rate": 0.0,
|
3137 |
+
"loss": 0.004,
|
3138 |
+
"reward": 1.3333333730697632,
|
3139 |
+
"reward_std": 0.41147559881210327,
|
3140 |
+
"rewards/accuracy_reward": 0.3333333432674408,
|
3141 |
+
"rewards/format_reward": 1.0,
|
3142 |
+
"step": 241
|
3143 |
+
}
|
3144 |
+
],
|
3145 |
+
"logging_steps": 1.0,
|
3146 |
+
"max_steps": 241,
|
3147 |
+
"num_input_tokens_seen": 0,
|
3148 |
+
"num_train_epochs": 1,
|
3149 |
+
"save_steps": 500,
|
3150 |
+
"stateful_callbacks": {
|
3151 |
+
"TrainerControl": {
|
3152 |
+
"args": {
|
3153 |
+
"should_epoch_stop": false,
|
3154 |
+
"should_evaluate": false,
|
3155 |
+
"should_log": false,
|
3156 |
+
"should_save": true,
|
3157 |
+
"should_training_stop": true
|
3158 |
+
},
|
3159 |
+
"attributes": {}
|
3160 |
+
}
|
3161 |
+
},
|
3162 |
+
"total_flos": 0.0,
|
3163 |
+
"train_batch_size": 1,
|
3164 |
+
"trial_name": null,
|
3165 |
+
"trial_params": null
|
3166 |
+
}
|
checkpoint-241/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29a51e69401bcc89579d8aeb02b6332a569eb27494642cc4cb4990bb76aa7073
|
3 |
+
size 7672
|
checkpoint-241/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-241/zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2-VL-7B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2VLForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"image_token_id": 151655,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 18944,
|
14 |
+
"max_position_embeddings": 32768,
|
15 |
+
"max_window_layers": 28,
|
16 |
+
"model_type": "qwen2_vl",
|
17 |
+
"num_attention_heads": 28,
|
18 |
+
"num_hidden_layers": 28,
|
19 |
+
"num_key_value_heads": 4,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": {
|
22 |
+
"mrope_section": [
|
23 |
+
16,
|
24 |
+
24,
|
25 |
+
24
|
26 |
+
],
|
27 |
+
"rope_type": "default",
|
28 |
+
"type": "default"
|
29 |
+
},
|
30 |
+
"rope_theta": 1000000.0,
|
31 |
+
"sliding_window": 32768,
|
32 |
+
"tie_word_embeddings": false,
|
33 |
+
"torch_dtype": "bfloat16",
|
34 |
+
"transformers_version": "4.49.0.dev0",
|
35 |
+
"use_cache": false,
|
36 |
+
"use_sliding_window": false,
|
37 |
+
"video_token_id": 151656,
|
38 |
+
"vision_config": {
|
39 |
+
"in_chans": 3,
|
40 |
+
"model_type": "qwen2_vl",
|
41 |
+
"spatial_patch_size": 14,
|
42 |
+
"torch_dtype": "float32"
|
43 |
+
},
|
44 |
+
"vision_end_token_id": 151653,
|
45 |
+
"vision_start_token_id": 151652,
|
46 |
+
"vision_token_id": 151654,
|
47 |
+
"vocab_size": 152064
|
48 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_implementation": "flash_attention_2",
|
3 |
+
"bos_token_id": 151643,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": [
|
6 |
+
151645,
|
7 |
+
151643
|
8 |
+
],
|
9 |
+
"pad_token_id": 151643,
|
10 |
+
"temperature": 0.01,
|
11 |
+
"top_k": 1,
|
12 |
+
"top_p": 0.001,
|
13 |
+
"transformers_version": "4.49.0.dev0",
|
14 |
+
"use_cache": false
|
15 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|