File size: 2,514 Bytes
0f663a2
 
c005269
0f663a2
 
 
 
 
c005269
 
0f663a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
base_model: dccuchile/tulio-chilean-spanish-bert
license: cc-by-4.0
metrics:
- accuracy
- precision
- recall
- f1
tags:
- generated_from_trainer
model-index:
- name: not-ner-v3_batch16
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# not-ner-v3_batch16

This model is a fine-tuned version of [dccuchile/tulio-chilean-spanish-bert](https://huggingface.co/dccuchile/tulio-chilean-spanish-bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1059
- Accuracy: 0.9709
- Precision: 0.9698
- Recall: 0.9709
- F1: 0.9699

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.0452        | 0.2646 | 200  | 0.2503          | 0.9596   | 0.9578    | 0.9596 | 0.9558 |
| 0.1058        | 0.5291 | 400  | 0.1167          | 0.9686   | 0.9673    | 0.9686 | 0.9668 |
| 0.1106        | 0.7937 | 600  | 0.1059          | 0.9709   | 0.9698    | 0.9709 | 0.9699 |
| 0.103         | 1.0582 | 800  | 0.1179          | 0.9662   | 0.9657    | 0.9662 | 0.9659 |
| 0.0629        | 1.3228 | 1000 | 0.1298          | 0.9719   | 0.9709    | 0.9719 | 0.9705 |
| 0.0633        | 1.5873 | 1200 | 0.1176          | 0.9732   | 0.9728    | 0.9732 | 0.9730 |
| 0.0436        | 1.8519 | 1400 | 0.1257          | 0.9725   | 0.9721    | 0.9725 | 0.9723 |
| 0.0487        | 2.1164 | 1600 | 0.1206          | 0.9729   | 0.9724    | 0.9729 | 0.9726 |
| 0.0309        | 2.3810 | 1800 | 0.1232          | 0.9705   | 0.9705    | 0.9705 | 0.9705 |
| 0.0235        | 2.6455 | 2000 | 0.1379          | 0.9742   | 0.9738    | 0.9742 | 0.9740 |
| 0.0272        | 2.9101 | 2200 | 0.1327          | 0.9729   | 0.9724    | 0.9729 | 0.9726 |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1