Update README.md
Browse files
README.md
CHANGED
@@ -1,38 +1,28 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
inference: false
|
4 |
-
tags: [green, p1, llmware-
|
5 |
---
|
6 |
|
7 |
-
#
|
8 |
|
9 |
-
**
|
10 |
-
|
11 |
-
This is an OpenVino int4 quantized version of slim-extract-tiny, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
|
12 |
|
|
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
- **Developed by:**
|
17 |
-
- **
|
18 |
-
- **
|
19 |
-
- **
|
|
|
20 |
- **Language(s) (NLP):** English
|
21 |
- **License:** Apache 2.0
|
22 |
-
- **Uses:**
|
23 |
- **RAG Benchmark Accuracy Score:** NA
|
24 |
- **Quantization:** int4
|
25 |
|
26 |
-
### Example Usage
|
27 |
-
|
28 |
-
from llmware.models import ModelCatalog
|
29 |
-
|
30 |
-
text_passage = "The company announced that for the current quarter the total revenue increased by 9% to $125 million."
|
31 |
-
model = ModelCatalog().load_model("slim-extract-tiny-ov")
|
32 |
-
llm_response = model.function_call(text_passage, function="extract", params=["revenue"])
|
33 |
-
|
34 |
-
Output: `llm_response = {"revenue": [$125 million"]}`
|
35 |
-
|
36 |
|
37 |
## Model Card Contact
|
38 |
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
inference: false
|
4 |
+
tags: [green, p1, llmware-encoder, ov]
|
5 |
---
|
6 |
|
7 |
+
# unitary-toxic-roberta-ov
|
8 |
|
9 |
+
**unitary-toxic-roberta-ov** is a toxicity classifier from [unitary/unbiased-toxic-roberta](https://www.huggingface.com/unitary/unbiased-toxic-roberta), packaged in OpenVino format.
|
|
|
|
|
10 |
|
11 |
+
The classifier can be used to evaluate toxic content in a prompt or in model output.
|
12 |
|
13 |
### Model Description
|
14 |
|
15 |
+
- **Developed by:** unitary
|
16 |
+
- **Quantized by:** llmware
|
17 |
+
- **Model type:** roberta
|
18 |
+
- **Parameters:** 125 million
|
19 |
+
- **Model Parent:** unitary/unbiased-toxic-roberta
|
20 |
- **Language(s) (NLP):** English
|
21 |
- **License:** Apache 2.0
|
22 |
+
- **Uses:** Prompt safety
|
23 |
- **RAG Benchmark Accuracy Score:** NA
|
24 |
- **Quantization:** int4
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
## Model Card Contact
|
28 |
|