--- license: apache-2.0 inference: false --- # SLIM-TOPICS <!-- Provide a quick summary of what the model is/does. --> **slim-topics** is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") model series, consisting of small, specialized decoder-based models, fine-tuned for function-calling. slim-sentiment has been fine-tuned for **topic analysis** function calls, generating output consisting of a python dictionary corresponding to specified keys, e.g.: `{"topics": ["..."]}` SLIM models are designed to generate structured outputs that can be used programmatically as part of a multi-step, multi-model LLM-based automation workflow. Each slim model has a 'quantized tool' version, e.g., [**'slim-topics-tool'**](https://huggingface.co/llmware/slim-topics-tool). ## Prompt format: `function = "classify"` `params = "topics"` `prompt = "<human> " + {text} + "\n" + ` `"<{function}> " + {params} + "</{function}>" + "\n<bot>:"` <details> <summary>Transformers Script </summary> model = AutoModelForCausalLM.from_pretrained("llmware/slim-topics") tokenizer = AutoTokenizer.from_pretrained("llmware/slim-topics") function = "classify" params = "topic" text = "The stock market declined yesterday as investors worried increasingly about the slowing economy." prompt = "<human>: " + text + "\n" + f"<{function}> {params} </{function}>\n<bot>:" inputs = tokenizer(prompt, return_tensors="pt") start_of_input = len(inputs.input_ids[0]) outputs = model.generate( inputs.input_ids.to('cpu'), eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, do_sample=True, temperature=0.3, max_new_tokens=100 ) output_only = tokenizer.decode(outputs[0][start_of_input:], skip_special_tokens=True) print("output only: ", output_only) # here's the fun part try: output_only = ast.literal_eval(llm_string_output) print("success - converted to python dictionary automatically") except: print("fail - could not convert to python dictionary automatically - ", llm_string_output) </details> <details> <summary>Using as Function Call in LLMWare</summary> from llmware.models import ModelCatalog slim_model = ModelCatalog().load_model("llmware/slim-topics") response = slim_model.function_call(text,params=["topics"], function="classify") print("llmware - llm_response: ", response) </details> ## Model Card Contact Darren Oberst & llmware team [Join us on Discord](https://discord.gg/MhZn5Nc39h)