File size: 1,680 Bytes
ed96172 76a3661 5fd8e7d 76a3661 7792f21 76a3661 7792f21 76a3661 0fe91b7 76a3661 0fe91b7 7792f21 a8a9783 76a3661 0fe91b7 76a3661 0fe91b7 7792f21 0fe91b7 76a3661 0fe91b7 7792f21 76a3661 4ad40b4 76a3661 0fe91b7 76a3661 0fe91b7 7792f21 a8a9783 7792f21 76a3661 0fe91b7 76a3661 0fe91b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: apache-2.0
---
# SLIM-NER-TOOL
<!-- Provide a quick summary of what the model is/does. -->
**slim-ner-tool** is a 4_K_M quantized GGUF version of slim-ner, providing a small, fast inference implementation, optimized for multi-model concurrent deployment.
[**slim-ner**](https://huggingface.co/llmware/slim-ner) is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") series, providing a set of small, specialized decoder-based LLMs, fine-tuned for function-calling.
To pull the model via API:
from huggingface_hub import snapshot_download
snapshot_download("llmware/slim-ner-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
Load in your favorite GGUF inference engine, or try with llmware as follows:
from llmware.models import ModelCatalog
# to load the model and make a basic inference
model = ModelCatalog().load_model("slim-ner-tool")
response = model.function_call(text_sample)
# this one line will download the model and run a series of tests
ModelCatalog().tool_test_run("slim-ner-tool", verbose=True)
Slim models can also be orchestrated as part of a multi-model, multi-step LLMfx calls:
from llmware.agents import LLMfx
llm_fx = LLMfx()
llm_fx.load_tool("ner")
response = llm_fx.ner(text)
Note: please review [**config.json**](https://huggingface.co/llmware/slim-ner-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.
## Model Card Contact
Darren Oberst & llmware team
[Any questions? Join us on Discord](https://discord.gg/MhZn5Nc39h)
|