File size: 1,434 Bytes
4e8ad9d
 
 
7a9bf8c
 
4e8ad9d
 
 
0d57ea3
4e8ad9d
0d57ea3
4e8ad9d
0d57ea3
4e8ad9d
 
 
 
 
0d57ea3
 
 
4e8ad9d
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
---
license: apache-2.0
inference: false 
base_model: llmware/slim-extract-qwen-0.5b
base_model_relation: quantized
tags: [green, p1, llmware-fx, ov, emerald]
---

# slim-extract-qwen-0.5b-ov  

**slim-extract-qwen-0.5b-ov** is a specialized function calling model with a single mission to look for values in a text, based on an "extract" key that is passed as a parameter.  No other instructions are required except to pass the context passage, and the target key, and the model will generate a python dictionary consisting of the extract key and a list of the values found in the text, including an 'empty list' if the text does not provide an answer for the value of the selected key.  

This is an OpenVino int4 quantized version of slim-extract-qwen-0.5b, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.    


### Model Description

- **Developed by:** llmware  
- **Model type:** qwen2-0.5b  
- **Parameters:** 0.5 billion
- **Model Parent:** llmware/slim-extract-qwen-0.5b
- **Language(s) (NLP):** English  
- **License:** Apache 2.0  
- **Uses:** Extraction of values from complex business documents    
- **RAG Benchmark Accuracy Score:** NA  
- **Quantization:** int4  
  
## Model Card Contact

[llmware on github](https://www.github.com/llmware-ai/llmware)  

[llmware on hf](https://www.huggingface.co/llmware)  

[llmware website](https://www.llmware.ai)