File size: 30,155 Bytes
fa3bc1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:156
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: What is the estimated training cost of DeepSeek v3, and how does
    it compare to the training hours used for Llama 31?
  sentences:
  - 'Your browser does not support the audio element.


    OpenAI aren’t the only group with a multi-modal audio model. Google’s Gemini also
    accepts audio input, and the Google Gemini apps can speak in a similar way to
    ChatGPT now. Amazon also pre-announced voice mode for Amazon Nova, but that’s
    meant to roll out in Q1 of 2025.

    Google’s NotebookLM, released in September, took audio output to a new level by
    producing spookily realistic conversations between two “podcast hosts” about anything
    you fed into their tool. They later added custom instructions, so naturally I
    turned them into pelicans:



    Your browser does not support the audio element.'
  - 'DeepSeek v3 is a huge 685B parameter model—one of the largest openly licensed
    models currently available, significantly bigger than the largest of Meta’s Llama
    series, Llama 3.1 405B.

    Benchmarks put it up there with Claude 3.5 Sonnet. Vibe benchmarks (aka the Chatbot
    Arena) currently rank it 7th, just behind the Gemini 2.0 and OpenAI 4o/o1 models.
    This is by far the highest ranking openly licensed model.

    The really impressive thing about DeepSeek v3 is the training cost. The model
    was trained on 2,788,000 H800 GPU hours at an estimated cost of $5,576,000. Llama
    3.1 405B trained 30,840,000 GPU hours—11x that used by DeepSeek v3, for a model
    that benchmarks slightly worse.'
  - 'Those US export regulations on GPUs to China seem to have inspired some very
    effective training optimizations!

    The environmental impact got better

    A welcome result of the increased efficiency of the models—both the hosted ones
    and the ones I can run locally—is that the energy usage and environmental impact
    of running a prompt has dropped enormously over the past couple of years.

    OpenAI themselves are charging 100x less for a prompt compared to the GPT-3 days.
    I have it on good authority that neither Google Gemini nor Amazon Nova (two of
    the least expensive model providers) are running prompts at a loss.'
- source_sentence: How does the launch of ChatGPT Pro impact access to OpenAI's most
    capable model compared to previous offerings?
  sentences:
  - 'These abilities are just a few weeks old at this point, and I don’t think their
    impact has been fully felt yet. If you haven’t tried them out yet you really should.

    Both Gemini and OpenAI offer API access to these features as well. OpenAI started
    with a WebSocket API that was quite challenging to use, but in December they announced
    a new WebRTC API which is much easier to get started with. Building a web app
    that a user can talk to via voice is easy now!

    Prompt driven app generation is a commodity already

    This was possible with GPT-4 in 2023, but the value it provides became evident
    in 2024.'
  - 'OpenAI made GPT-4o free for all users in May, and Claude 3.5 Sonnet was freely
    available from its launch in June. This was a momentus change, because for the
    previous year free users had mostly been restricted to GPT-3.5 level models, meaning
    new users got a very inaccurate mental model of what a capable LLM could actually
    do.

    That era appears to have ended, likely permanently, with OpenAI’s launch of ChatGPT
    Pro. This $200/month subscription service is the only way to access their most
    capable model, o1 Pro.

    Since the trick behind the o1 series (and the future models it will undoubtedly
    inspire) is to expend more compute time to get better results, I don’t think those
    days of free access to the best available models are likely to return.'
  - 'Intuitively, one would expect that systems this powerful would take millions
    of lines of complex code. Instead, it turns out a few hundred lines of Python
    is genuinely enough to train a basic version!

    What matters most is the training  data. You need a lot of data to make these
    things work, and the quantity and quality of the training data appears to be the
    most important factor in how good the resulting model is.

    If you can gather the right data, and afford to pay for the GPUs to train it,
    you can build an LLM.'
- source_sentence: What are the implications of having a Code Interpreter equivalent
    for fact-checking natural language?
  sentences:
  - 'Your browser does not support the audio element.


    OpenAI aren’t the only group with a multi-modal audio model. Google’s Gemini also
    accepts audio input, and the Google Gemini apps can speak in a similar way to
    ChatGPT now. Amazon also pre-announced voice mode for Amazon Nova, but that’s
    meant to roll out in Q1 of 2025.

    Google’s NotebookLM, released in September, took audio output to a new level by
    producing spookily realistic conversations between two “podcast hosts” about anything
    you fed into their tool. They later added custom instructions, so naturally I
    turned them into pelicans:



    Your browser does not support the audio element.'
  - 'Except... you can run generated code to see if it’s correct. And with patterns
    like ChatGPT Code Interpreter the LLM can execute the code itself, process the
    error message, then rewrite it and keep trying until it works!

    So hallucination is a much lesser problem for code generation than for anything
    else. If only we had the equivalent of Code Interpreter for fact-checking natural
    language!

    How should we feel about this as software engineers?

    On the one hand, this feels like a threat: who needs a programmer if ChatGPT can
    write code for you?'
  - 'The biggest innovation here is that it opens up a new way to scale a model: instead
    of improving model performance purely through additional compute at training time,
    models can now take on harder problems by spending more compute on inference.

    The sequel to o1, o3 (they skipped “o2” for European trademark reasons) was announced
    on 20th December with an impressive result against the ARC-AGI benchmark, albeit
    one that likely involved more than $1,000,000 of compute time expense!

    o3 is expected to ship in January. I doubt many people have real-world problems
    that would benefit from that level of compute expenditure—I certainly don’t!—but
    it appears to be a genuine next step in LLM architecture for taking on much harder
    problems.'
- source_sentence: What advantages does a 64GB Mac have for running models compared
    to other machines?
  sentences:
  - 'My personal laptop is a 64GB M2 MacBook Pro from 2023. It’s a powerful machine,
    but it’s also nearly two years old now—and crucially it’s the same laptop I’ve
    been using ever since I first ran an LLM on my computer back in March 2023 (see
    Large language models are having their Stable Diffusion moment).

    That same laptop that could just about run a GPT-3-class model in March last year
    has now run multiple GPT-4 class models! Some of my notes on that:'
  - 'This prompt-driven custom interface feature is so powerful and easy to build
    (once you’ve figured out the gnarly details of browser sandboxing) that I expect
    it to show up as a feature in a wide range of products in 2025.

    Universal access to the best models lasted for just a few short months

    For a few short months this year all three of the best available models—GPT-4o,
    Claude 3.5 Sonnet and Gemini 1.5 Pro—were freely available to most of the world.'
  - 'On paper, a 64GB Mac should be a great machine for running models due to the
    way the CPU and GPU can share the same memory. In practice, many models are released
    as model weights and libraries that reward NVIDIA’s CUDA over other platforms.

    The llama.cpp ecosystem helped a lot here, but the real breakthrough has been
    Apple’s MLX library, “an array framework for Apple Silicon”. It’s fantastic.

    Apple’s mlx-lm Python library supports running a wide range of MLX-compatible
    models on my Mac, with excellent performance. mlx-community on Hugging Face offers
    more than 1,000 models that have been converted to the necessary format.'
- source_sentence: How does Claude enable users to interact with applications generated
    by its system?
  sentences:
  - 'We already knew LLMs were spookily good at writing code. If you prompt them right,
    it turns out they can build you a full interactive application using HTML, CSS
    and JavaScript (and tools like React if you wire up some extra supporting build
    mechanisms)—often in a single prompt.

    Anthropic kicked this idea into high gear when they released Claude Artifacts,
    a groundbreaking new feature that was initially slightly lost in the noise due
    to being described half way through their announcement of the incredible Claude
    3.5 Sonnet.

    With Artifacts, Claude can write you an on-demand interactive application and
    then let you use it directly inside the Claude interface.

    Here’s my Extract URLs app, entirely generated by Claude:'
  - 'An interesting point of comparison here could be the way railways rolled out
    around the world in the 1800s. Constructing these required enormous investments
    and had a massive environmental impact, and many of the lines that were built
    turned out to be unnecessary—sometimes multiple lines from different companies
    serving the exact same routes!

    The resulting bubbles contributed to several financial crashes, see Wikipedia
    for Panic of 1873, Panic of 1893, Panic of 1901 and the UK’s Railway Mania. They
    left us with a lot of useful infrastructure and a great deal of bankruptcies and
    environmental damage.

    The year of slop'
  - 'We don’t yet know how to build GPT-4

    Frustratingly, despite the enormous leaps ahead we’ve had this year, we are yet
    to see an alternative model that’s better than GPT-4.

    OpenAI released GPT-4 in March, though it later turned out we had a sneak peak
    of it in February when Microsoft used it as part of the new Bing.

    This may well change in the next few weeks: Google’s Gemini Ultra has big claims,
    but isn’t yet available for us to try out.

    The team behind Mistral are working to beat GPT-4 as well, and their track record
    is already extremely strong considering their first public model only came out
    in September, and they’ve released two significant improvements since then.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 1.0
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 1.0
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.20000000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.10000000000000002
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 1.0
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 1.0
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 1.0
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 1.0
      name: Cosine Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("llm-wizard/legal-ft-2")
# Run inference
sentences = [
    'How does Claude enable users to interact with applications generated by its system?',
    'We already knew LLMs were spookily good at writing code. If you prompt them right, it turns out they can build you a full interactive application using HTML, CSS and JavaScript (and tools like React if you wire up some extra supporting build mechanisms)—often in a single prompt.\nAnthropic kicked this idea into high gear when they released Claude Artifacts, a groundbreaking new feature that was initially slightly lost in the noise due to being described half way through their announcement of the incredible Claude 3.5 Sonnet.\nWith Artifacts, Claude can write you an on-demand interactive application and then let you use it directly inside the Claude interface.\nHere’s my Extract URLs app, entirely generated by Claude:',
    'We don’t yet know how to build GPT-4\nFrustratingly, despite the enormous leaps ahead we’ve had this year, we are yet to see an alternative model that’s better than GPT-4.\nOpenAI released GPT-4 in March, though it later turned out we had a sneak peak of it in February when Microsoft used it as part of the new Bing.\nThis may well change in the next few weeks: Google’s Gemini Ultra has big claims, but isn’t yet available for us to try out.\nThe team behind Mistral are working to beat GPT-4 as well, and their track record is already extremely strong considering their first public model only came out in September, and they’ve released two significant improvements since then.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| cosine_accuracy@1   | 1.0     |
| cosine_accuracy@3   | 1.0     |
| cosine_accuracy@5   | 1.0     |
| cosine_accuracy@10  | 1.0     |
| cosine_precision@1  | 1.0     |
| cosine_precision@3  | 0.3333  |
| cosine_precision@5  | 0.2     |
| cosine_precision@10 | 0.1     |
| cosine_recall@1     | 1.0     |
| cosine_recall@3     | 1.0     |
| cosine_recall@5     | 1.0     |
| cosine_recall@10    | 1.0     |
| **cosine_ndcg@10**  | **1.0** |
| cosine_mrr@10       | 1.0     |
| cosine_map@100      | 1.0     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 156 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 156 samples:
  |         | sentence_0                                                                         | sentence_1                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 12 tokens</li><li>mean: 20.22 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 43 tokens</li><li>mean: 134.95 tokens</li><li>max: 214 tokens</li></ul> |
* Samples:
  | sentence_0                                                                          | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
  |:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What topics were covered in the annotated presentations given in 2023?</code> | <code>I also gave a bunch of talks and podcast appearances. I’ve started habitually turning my talks into annotated presentations—here are my best from 2023:<br><br>Prompt injection explained, with video, slides, and a transcript<br>Catching up on the weird world of LLMs<br>Making Large Language Models work for you<br>Open questions for AI engineering<br>Embeddings: What they are and why they matter<br>Financial sustainability for open source projects at GitHub Universe<br><br>And in podcasts:<br><br><br>What AI can do for you on the Theory of Change<br><br>Working in public on Path to Citus Con<br><br>LLMs break the internet on the Changelog<br><br>Talking Large Language Models on Rooftop Ruby<br><br>Thoughts on the OpenAI board situation on Newsroom Robots</code> |
  | <code>Which podcasts featured discussions about Large Language Models?</code>       | <code>I also gave a bunch of talks and podcast appearances. I’ve started habitually turning my talks into annotated presentations—here are my best from 2023:<br><br>Prompt injection explained, with video, slides, and a transcript<br>Catching up on the weird world of LLMs<br>Making Large Language Models work for you<br>Open questions for AI engineering<br>Embeddings: What they are and why they matter<br>Financial sustainability for open source projects at GitHub Universe<br><br>And in podcasts:<br><br><br>What AI can do for you on the Theory of Change<br><br>Working in public on Path to Citus Con<br><br>LLMs break the internet on the Changelog<br><br>Talking Large Language Models on Rooftop Ruby<br><br>Thoughts on the OpenAI board situation on Newsroom Robots</code> |
  | <code>When did Google release their gemini-20-flash-thinking-exp model?</code>      | <code>OpenAI are not the only game in town here. Google released their first entrant in the category, gemini-2.0-flash-thinking-exp, on December 19th.<br>Alibaba’s Qwen team released their QwQ model on November 28th—under an Apache 2.0 license, and that one I could run on my own machine. They followed that up with a vision reasoning model called QvQ on December 24th, which I also ran locally.<br>DeepSeek made their DeepSeek-R1-Lite-Preview model available to try out through their chat interface on November 20th.<br>To understand more about inference scaling I recommend Is AI progress slowing down? by Arvind Narayanan and Sayash Kapoor.</code>                                                                                                                              |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch | Step | cosine_ndcg@10 |
|:-----:|:----:|:--------------:|
| 1.0   | 16   | 1.0            |
| 2.0   | 32   | 1.0            |
| 3.0   | 48   | 1.0            |
| 3.125 | 50   | 1.0            |
| 4.0   | 64   | 1.0            |
| 5.0   | 80   | 1.0            |
| 6.0   | 96   | 1.0            |
| 6.25  | 100  | 1.0            |
| 7.0   | 112  | 1.0            |
| 8.0   | 128  | 1.0            |
| 9.0   | 144  | 1.0            |
| 9.375 | 150  | 1.0            |
| 10.0  | 160  | 1.0            |


### Framework Versions
- Python: 3.13.1
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->